arminstraub.com

The p-adic valuation of k-central binomial coefficients

The p-adic valuation of k-central binomial coefficients
Armin Straub, Victor H. Moll, Tewodros AmdeberhanActa Arithmetica — Volume 140, Number 1, 2009, Pages 31-42

Abstract

The coefficients \(c(n,k)\) defined by $$(1-k^{2}x)^{-1/k} = \sum_{n \geq 0} c(n,k)x^n$$ reduce to the central binomial coefficients \(\binom{2n}{n}\) for \(k=2\). Motivated by a question of H. Montgomery and H. Shapiro for the case \(k=3\), we prove that \(c(n,k)\) are integers and study their divisibility properties.

Download

LinkSizeDescriptionHits
136.18 KB Preprint (PDF, 11 pages) 4467

BibTeX

@article{centralbinomials-2009,
    author = {Armin Straub and Victor H. Moll and Tewodros Amdeberhan},
    title = {The $p$-adic valuation of $k$-central binomial coefficients},
    journal = {Acta Arithmetica},
    year = {2009},
    volume = {140},
    number = {1},
    pages = {31--42},
    doi = {10.4064/aa140-1-2},
}