Armin Straub, Victor H. Moll, Tewodros Amdeberhan — Acta Arithmetica — Volume 140, Number 1, 2009, Pages 31-42
Abstract
The coefficients \(c(n,k)\) defined by $$(1-k^{2}x)^{-1/k} = \sum_{n \geq 0} c(n,k)x^n$$ reduce to the central binomial coefficients \(\binom{2n}{n}\) for \(k=2\). Motivated by a question of H. Montgomery and H. Shapiro for the case \(k=3\), we prove that \(c(n,k)\) are integers and study their divisibility properties.Download
| Link | Size | Description | Hits |
|---|---|---|---|
| centralbinomials.pdf | 136.18 KB | Preprint (PDF, 11 pages) | 5856 |
BibTeX
@article{centralbinomials-2009,
author = {Armin Straub and Victor H. Moll and Tewodros Amdeberhan},
title = {The $p$-adic valuation of $k$-central binomial coefficients},
journal = {Acta Arithmetica},
year = {2009},
volume = {140},
number = {1},
pages = {31--42},
doi = {10.4064/aa140-1-2},
}