Apéry limits: Experiments and proofs

Apéry limits: Experiments and proofs
Marc Chamberland, Armin Straub — Preprint — 2020


An important component of Apéry's proof that \(\zeta (3)\) is irrational involves representing \(\zeta (3)\) as the limit of the quotient of two rational solutions to a three-term recurrence. We present various approaches to such Apéry limits and highlight connections to continued fractions as well as the famous theorems of Poincaré and Perron on difference equations. In the spirit of Jon Borwein, we advertise an experimental-mathematics approach by first exploring in detail a simple but instructive motivating example. We conclude with various open problems.


284.38 KB Preprint (PDF, 17 pages) 187


    author = {Marc Chamberland and Armin Straub},
    title = {Ap\'ery limits: Experiments and proofs},
    journal = {Preprint},
    year = {2020},