**Sums of powers of binomials, their Apéry limits, and Franel's suspicions (Paris)**

**Date:** 2022/07/01
**Occasion:** Joint Seminar: MATHEXP-PolSys & Transcendence and Combinatorics
**Place:** Inria Saclay & Sorbonne University, Paris

## Abstract

Apéry's proof of the irrationality of \(\zeta(3)\) relies on representing that value as the limit of the quotient of two rational solutions to a three-term recurrence. We review such Apéry limits and explore a particularly simple instance. We then explicitly determine the Apéry limits attached to sums of powers of binomial coefficients. As an application, we prove a weak version of Franel's conjecture on the order of the recurrences for these sequences. This is based on joint work with Wadim Zudilin.## Download

Link | Size | Description | Hits |
---|---|---|---|

2022aperylimits-paris.pdf | 1.39 MB | Slides (PDF, 123 pages) | 456 |