**Congruences for Fishburn numbers modulo prime powers**

Armin Straub — International Journal of Number Theory — Volume 11, Number 5, 2015, Pages 1679-1690

## Abstract

The Fishburn numbers \(\xi (n)\) are defined by the formal power series \[ \sum_{n \geq 0} \xi (n) q^n = \sum_{n \geq 0} \prod_{j = 1}^n (1 - (1 - q)^j). \] Recently, G. Andrews and J. Sellers discovered congruences of the form \(\xi (p m + j) \equiv 0\) modulo \(p\), valid for all \(m \geq 0\). These congruences have then been complemented and generalized to the case of \(r\)-Fishburn numbers by F. Garvan. In this note, we answer a question of Andrews and Sellers regarding an extension of these congruences to the case of prime powers. We show that, under a certain condition, all these congruences indeed extend to hold modulo prime powers.## Download

Link | Size | Description | Hits |
---|---|---|---|

fishburncongruences.pdf | 317.50 KB | Preprint (PDF, 13 pages) | 1217 |

fishburnnumbers.m | 7.78 MB | Mathematica file containing the first 2500 Fishburn numbers | 1853 |

## BibTeX

@article{fishburncongruences-2015, author = {Armin Straub}, title = {Congruences for {F}ishburn numbers modulo prime powers}, journal = {International Journal of Number Theory}, year = {2015}, volume = {11}, number = {5}, pages = {1679--1690}, doi = {10.1142/S1793042115400175}, }