**The p-adic valuation of k-central binomial coefficients**

Armin Straub, Victor H. Moll, Tewodros Amdeberhan — Acta Arithmetica — Volume 140, Number 1, 2009, Pages 31-42

## Abstract

The coefficients \(c(n,k)\) defined by $$(1-k^{2}x)^{-1/k} = \sum_{n \geq 0} c(n,k)x^n$$ reduce to the central binomial coefficients \(\binom{2n}{n}\) for \(k=2\). Motivated by a question of H. Montgomery and H. Shapiro for the case \(k=3\), we prove that \(c(n,k)\) are integers and study their divisibility properties.## Download

Link | Size | Description | Hits |
---|---|---|---|

centralbinomials.pdf | 136.18 KB | Preprint (PDF, 11 pages) | 2686 |

## BibTeX

@article{centralbinomials-2009, author = {Armin Straub and Victor H. Moll and Tewodros Amdeberhan}, title = {The $p$-adic valuation of $k$-central binomial coefficients}, journal = {Acta Arithmetica}, year = {2009}, volume = {140}, number = {1}, pages = {31--42}, doi = {10.4064/aa140-1-2}, }