arminstraub.com

The p-adic valuation of k-central binomial coefficients

The p-adic valuation of k-central binomial coefficients
Armin Straub, Victor H. Moll, Tewodros AmdeberhanActa Arithmetica — Volume 140, Number 1, 2009, Pages 31-42

Abstract

The coefficients c(n,k)c(n,k) defined by (1k2x)1/k=n0c(n,k)xn(1-k^{2}x)^{-1/k} = \sum_{n \geq 0} c(n,k)x^n reduce to the central binomial coefficients (2nn)\binom{2n}{n} for k=2k=2. Motivated by a question of H. Montgomery and H. Shapiro for the case k=3k=3, we prove that c(n,k)c(n,k) are integers and study their divisibility properties.

Download

LinkSizeDescriptionHits
136.18 KB Preprint (PDF, 11 pages) 4856

BibTeX

@article{centralbinomials-2009,
    author = {Armin Straub and Victor H. Moll and Tewodros Amdeberhan},
    title = {The $p$-adic valuation of $k$-central binomial coefficients},
    journal = {Acta Arithmetica},
    year = {2009},
    volume = {140},
    number = {1},
    pages = {31--42},
    doi = {10.4064/aa140-1-2},
}