Midterm #2

Please print your name:

No notes, fancy calculators or tools of any kind are permitted. There are 30 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (8 points) We have shown that $A(h) = \frac{1}{2h} [f(x+h) - f(x-h)]$ is an approximation of f'(x) of order 2.

- (a) Determine the leading term of the error.
- (b) Apply Richardson extrapolation to A(h) and A(3h) to obtain an approximation of f'(x) of higher order.

Problem 2. (3 points) Recall that a cubic spline $S(x)$ through $(x_0, y_0),, (x_n, y_n)$ with $x_0 < x_1 < < x_n$ is piecewis defined by n cubic polynomials $S_1(x),, S_n(x)$ such that $S(x) = S_i(x)$ for $x \in [x_{i-1}, x_i]$. Name two common boundary conditions of cubic splines and state their mathematical definition.		
roblem	3. (8 points) Use the trapezoidal rule to approximate $\int_1^3 \frac{1}{x} dx = \log(3)$.	
	$e h = 1 \text{ and } h = \frac{1}{2}.$	
ore	ing Richardson extrapolation, combine the previous two approximations to obtain an approximation of high ler. (No need to simplify your answer.)	
(c) Th	e extrapolated approximation is equivalent to the outcome of which method applied with $h = \frac{1}{2}$?	

Prob	elem 4. (8 points) Determine the minimal polynomial $P(x)$ interpolating $(-2,1),(0,2),(5,2)$.
(a)	Write down the polynomial in Lagrange form.
(b)	Write down the polynomial in Newton form.
(c)	Suppose the above points lie on the graph of a smooth function $f(x)$. Write down an "explicit" formula for $f(x) - P(x)$, the error when using the interpolating polynomial to approximate $f(x)$.
$n \geqslant 0$.	olem 5. (3 points) Suppose that $f(x)$ is a smooth function such that $ f^{(n)}(x) \leq \frac{n!}{4}$ for all $x \in [-1, 1]$ and all Suppose we approximate $f(x)$ on the interval $[-1, 1]$ by a polynomial interpolation $P(x)$. How many Chebyshev is do we need to use in order to guarantee that the maximal error is at most 10^{-3} ?

(extra scratch paper)