: - MATH 436/565 — Numerical Analysis
Mldterm #2 Pra’Ctlce Midterm: Wednesday, Nov 12, 2025

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any math-
ematical typo, that is not yet fixed by the time you send it to me, is worth a bonus point.

Reminder. No notes, calculators (with the exception of one that can only do basic arithmetic—mo graphing or
additional algebraic capabilities) or tools of any kind will be permitted on the midterm exam.

Problem 1. Determine the minimal polynomial P(z) interpolating (—2,1),(0,1), (1, 1),(3,2).
(a) Write down the polynomial in Lagrange form.
(b) Write down the polynomial in Newton form.
(c) Suppose the above points lie on the graph of a smooth function f(z). Write down an “explicit” formula for
f(x) — P(x), the error when using the interpolating polynomial to approximate f(x).
Solution.

(a) The interpolating polynomial in Lagrange form is

. a(@—1)(@-3) (+2)(@—1)(z—3) z
POl E - T ey i) i Ers6-1)

(If we had a reason to do so (we don’t!), we could expand that expression to find P(z)=1—=+35+35.)

(b) Newton’s divided differences for the four points are:

—21]1
1—-1
0—(—2) "
0-0
0|1 e 0
1
=-1_, g0 _1
1—-0 3—(—2) 30
1
3 o _ 1
11 3-0 6
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3—1 2
3|2

Accordingly, reading the coefficients from the top edge of the triangle (as shaded above), the Newton form is

P@g:1+wx+m+0@+%x+§ﬂw+%ﬂx—U=1+§ﬂx+%ﬂx—9-

(Since the interpolating polynomial is unique, this polynomial must be the same as the one in the first part.)

Comment. Note that the y-coordinate of the first three points is 1. Therefore, the interpolating polynomial for
these three points is simply Q(2)=1. The Newton form of P(x) is P(z) = Q(x)+ c3(x + 2)x(x — 1) (we discussed
how, in general, the Newton form makes it convenient to add additional point) and we could alternatively find
¢3=1/30 by plugging in the fourth point.
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_ py = L0 e _ . _
(¢) f(z)— P(x) 1 (x4 2)z(z — 1)(x — 3) for some £ € [—2, 3] (assuming that = € [-2, 3] as well).

Comment. You don’t need to “memorize” the general result we proved in class to write down this error formula.
Instead, note that the term (x4 2)z(x — 1)(2 — 3) on the right-hand side is natural because we know that the
error is 0 at x =—2,0,1,3. On the other hand, (z + 2)z(xz — 1)(z — 3) has degree 4 and, therefore, just like for
Taylor expansion, it should go with f*)(¢)/4! (indeed, as we noted in class, Taylor expansion around z =z
can be considered as the limiting case where the interpolation nodes all become equal to a single xg).

Problem 2. Suppose we approximate f(x) :cos(%) by the polynomial P(z) interpolating it at x =1,2,3.

T

(a) Without computing P(x), give an upper bound for the error when =0 and when z =

[\

(b) For which z in [0, 7] is our bound for the error maximal? What is the bound in that case?

Solution.

(a) The error is

(3)
f@) - P =I 8@ -1 - 2@ -3)

where ¢ is between 1,3 and z. Note that f®)(z) :%sin(g) so that | f®)(&)| < %. Hence, the error is bounded by

(@) = P@)| <5 gl@ =1z —2)(z =)
In particular, in the case x =0,
1£(0) = P(0)] < 55l (-1)(~2)(=3) =5 =0.125,

. . ™
while, in the case z =<,

1(5) -GG 1)) =oo0r

Comment. Why is it not surprising that the error bound for z =0 is considerably larger?

o1
(b) Recall that our bound for the error is =|(z — 1)(z — 2)(z — 3)|.

We need to determine the maximal absolute value of the cubic polynomial e(z) = (x —1)(x — 2)(xz — 3) on the
interval [0, 7).

") =3x2— ") = —94- L LVt 2 o
We compute e'(z) =3z* — 122+ 11 and find that e’(z) =0 for =2+ 7 At these values, 6(2 + \/g) —:|:3\/g ~
+0.385. At the endpoints of the interval [0, 7], e(0) = —6 and e(w) = 0.346.

Hence, |e(z)| is maximal on [0, 7] for 2 =0. We already computed that, in this case, the error bound is
1
|f(0) = PO)[ <5

Problem 3. Suppose we approximate a function f(x) by the polynomial P(x) interpolating it at © = —1, —%,%, 1.

Suppose that we know that | f(™)(z)| <n for all 2 € [~1,1].

(a) Give an upper bound for the error when z = —% and when z=0.

(b) Give an upper bound for the error for all z € [—1,1].

(c¢) Suppose we replace the nodes —1, ,g, %,

nodes is this upper bound for the error minimal?

1 with four other values. For which choice of these four interpolation

(d) For this optimal choice, what is the upper bound for the error for all z € [—1,1]?

Armin Straub 2
straub@southalabama.edu



Solution.

(a) The error is

(@)= Px)= f(j!@ (o + 1)(:c +§>(x —%)(:c )= f(j!(@ (22— 1)(952 —g)

where £ is between —1 and 1 (provided that x € [-1,1]). Since |f(4)( )|

N

%:%, the error is bounded by

1 4
[f(x) = P(z)| < o|(a* =D 22 =5 ).
6 9
: 1 14 1 175
If 2= —%, then this bound becomes |f(x) — P(z)| <E|(3_16 - 1)(%—§)| _5'411_32%0'0675

If =0, then this bound becomes | f(z) — P(x)| < L

=1 (=5)]| ==~ 0.0741.

9

(b) Consider g(z)= (22— 1)(2? _%):m"‘ 193 2—|— We need to compute Ir[lai(”\g(x).
T e

Since g(£+1) =0, the maximum value of |g(z)| must be attained at a point where g’(z)=0.

1N g3 26 N () o _ .1 /13
We compute g'(z) =42 — Fx. Hence ¢'(z) =0if 2=0or v =25, /5.

Since |g(0)] :% and ‘g(:l:%, /%)‘ :%<%, we conclude that zél[lfifl] lg(z)

Therefore, our bound for the error is max |f(x) — P(x)| < (2% — 1)<x2 5)‘ :%.%:%N 0.0741.

1
ze[-1,1] 6ze[—1,1]

(c) We have shown in class that max,e(—1,1]|(z — 1) - (2 — x,)| is minimal for the Chebyshev nodes

25 —1 .
:Ej:cos<(2—n)7r), j=1,...,n.

In our case, n =4, and the four Chebyshev nodes are COS(%), cos(%ﬂ), cos(%r), cos(%).

(d) For the Chebyshev nodes, we have max,e[—1,1)[(z — 1) (z — 2,)] :%.
11 <0.0208.

In our case, the bound for the error is max |f(z)— P(z)|< 1 max |[(x—x1)-(x—x4)|= ERT

z€[-1,1] 6ze[-1,1]

| =

Problem 4. Suppose that f(z) is a smooth function such that | f"(z)| <n! for all 2 € [~1,1] and all n > 0. Suppose
we approximate f(x) on the interval [—1,1] by a polynomial interpolation P(z). How many Chebyshev nodes do we
need to use in order to guarantee that the maximal error is at most 10767

Solution. We know that, using n Chebyshev nodes, the error is bounded as

RGN

| g on—1°

-P,_ <—
xer[rl—a:)l(,l] |f(=) 1)l 2n—1p) 561[11—2?)1{,1]

We need to choose n so that 271 >105. Knowing that 2'°=1024 > 103, we see that 220> 106.

Thus, for n =21 Chebyshev nodes the maximal error is guaranteed to be less than 1076,
Problem 5. Determine the natural cubic spline through (—3,1), (0, 3), (2,1).

Si(x), if z€[-3,0],

Solution. Let us write the spline as S(x) = { So(x), if z€0,2]
2 ) » <l
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To simplify our life, we expand both S; around z =0 (the middle knot).
Si(x) = a;x® + bix? + ciw + d;.

e Note that d;=5;(0), ¢;=S/(0) and b;= 1S{/(O). Because S(z) is C? smooth, we have by = ba, ¢1 = c3 and dy =da.

2
We simply write b, ¢ and d for these values in the sequel.

e d=3 because S1(0) = S2(0) =3.

e S(z) further interpolates the other two points, (—3,1) and (2, 1), resulting in the following two equations:

Si(=3) = —2Ta;+9b—3c+3 =1
S2(2) = 8as+4b+2c+3 =1

e The natural boundary conditions provide two more equations: (Note that S!(z) = 6a.z + 2b;.)

SY(=3) = —18a;+2b=0
S%(2) = 12a5+2b=0

We use these last two equations to replace aq :%b and as = —éb in the other two equations in terms of b:

727~%b+9b73c+3 = 6b—3c+3=1

8(—b) +4b+2c+3 = Th+2c+3=1
Solving these two equations in two unknowns, we find b= —% and c= —%.
Consequently, a1 = %b = —% and as = —%b = %
Hence, the desired natural cubic spline is
, if x€[-3,0],
S(m):3—lx—lx2—|— 3 118 [ ]
32 =, ifxzel0,2]

Problem 6. Recall that a cubic spline S(x) through (zg, o), - .., (Tn, Yn) With zg<x1 < ... <z, is piecewise defined
by n cubic polynomials Si(x),..., Sy(x) such that S(x) = S;(z) for x € [z;_1, z;]. Name three common boundary
conditions of cubic splines and state their mathematical definition.

Solution. The following are common choices for the boundary conditions of cubic splines:
e natural: S{(zo) =Sy (xs) =0
The resulting splines are simply called natural cubic splines.
e not-a-knot: S7"(x1)=53"(x1) and S, (n—1) =S} 1(xn_1)
e periodic: S{(l‘o) = S;L(CL'”) and S{/(.”L'o) = S{{(xn) (only makes sense if yo=yn)

There are other common choices such clamped cubic splines for which the first derivatives at the endpoints are being set (‘“clamped”) to
user-specified values.

Problem 7. Obtain approximations for f’(x) and f”(x) using the values f(x —2h), f(x), f(x+ 3h) as follows:
determine the polynomial interpolation corresponding to these values and then use its derivatives to approximate those
of f. In each case, determine the order of the approximation and the leading term of the error.
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Solution. We first compute the polynomial p(t) that interpolates the three points (x — 2h, f(z — 2h)), (z, f(x)),
(x4 3h, f(x+3h)) using Newton’s divided differences:

x—2h| f(x —2h)

2f(x+3h)—=5f(x)+3f(x —2h)
30h2 e

x+3h| f(x+3h)
Hence, reading the coefficients from the top edge of the triangle, the interpolating polynomial is
p(t) = f(z) +c1(t —x+2h) +co(t —x+2h)(t — z).
e (approximating f’(x)) Since p'(t) =c1 + co(2t — 2z + 2h), we have
f(x)— f(z—2h) n 2f(x+3h)—5f(x)+3f(x—2h)

! _ —
p(x) = c14+2hca= 5T 5

4f(x+3h)+5f(x)—9f(x—2h)
30h '

This is our approximation for f’(z). To determine the order and the error (we expect the error to be of the
form Ch?+ O(h?) and, since we divide by h, so we expand up to h? in the following), we combine

Flath) = F@)+ Fht s an+ L2 n o),

fle—2h) = f@)—2f@)h+2f"(@)h? - 4f”'< A7 @ s 4 o),

Flat3h) = F(@)+ 37 @ht 5 @+ 2L "/( @) s 4 o)

to find

4f(x+3h)+5f(x) —9f(x —2h)=30f"(x)h+30f" (x)h3+ O(h*).
Hence, dividing by 30k, we conclude that

4f(x+3h)+5f(x)—9f(x—2h)
307 = f'(z)

+ f"(z)h?+ O(h3).

Consequently, the approximation is of order 2.

2f(x+3h)—=5f(x)+3f(x —2h)
15h2 ’

This is our approximation for f”(x). To determine the order and the error, we proceed as before to find

e (approximating f”(x)) Since p”’(t) =2cq, we have p”(z) =2co=

2f(x+3h) —5f(x)+3f(x —2h)=15f"(x)h? + 5" (x)h>+ O(h*).
Hence, dividing by 15h?, we conclude that

2f(x+3h)—5f(z)+3f(x—2h)
15h2

= () + 5 [ (@)h+ O(R).

Consequently, the approximation is of order 1.

Armin Straub 5
straub@southalabama.edu



Problem 8. Suppose that A(%) =a and A(%) = are approximations of order 4 of some quantity A*. What is the
approximation we obtain from using Richardson extrapolation?

Solution. Since A(h) is an approximation of order 4, we expect A(h)~ A*+ Ch* for some constant C.

Correspondingly, A(%) ~ A* +%C and A(l_lo) ~ A* _’_%040_

Hence, 1014 (15) — 4A(3) ~ (10% — 4%) A%,

104‘4(%) - 44A(%) _ 10000, 256

The Richardson extrapolation is 0l =1 =712 0 " 9rar®

Problem 9. We have shown that A(h) :%[f(x +h)—2f(x)+ f(z—h)] is an approximation of f”(z) of order 2.
(a) Determine the leading term of the error.
(b) Apply Richardson extrapolation to A(h) and A(3h) to obtain an approximation of f”(z) of higher order.

(¢) Explain in a sentence why the resulting approximation is of order 4 (rather than 3).

Solution.

(a) Our goal is to compute C such that A(h)= f"(z)+ Ch?+ O(h®). By Taylor’s theorem, we have (note that,
because we will divide by h2, we know from the beginning that we need to compute up to h* in the following)

h? h3 ht 5
F@)+hf'(@) + 5 f1(@) + - (@) + 5 f O (@) + O(h),
h? 3 X
fle=h) = f@)=hf'(@)+5 (@) = f"(@) + 57 [ (@) + Oh).

flz+h)

Adding these and subtracting 2 f(x), we find
h4
Flath)=2f(2) + fz —h) = h2f"(2) + 75 F D) + O(h).
Hence, A(h) = f"(z) + 2= f9(z) + O(h3).
Comment. By computing one more term, we see that we even have A(h) = f"(z) +%f(4) () + O(h%).

(b) We just showed that A(h) = f"(z)+ Ch?+ O(h?) for some constant C' (we even determined C' but it doesn’t
matter here). Correspondingly, A(3h)= f"(x)+9Ch?+ O(h®). Hence, 9A(h) — A(3h) = (9 —1) f"(z) + O(h?).

The Richardson extrapolation of A(h) and A(3h) therefore is:

9A(h)— A(3h) 9 1
ST = e h) — 21(2) + flx )~ gl (4 30) ~ 2 (2) + Flo — 3h)]
1

= oyl S (@ +3h) +8Lf(x+h) — 160 (x) +81f(x — h) — f(x — 3h)]

This is an approximation of f”(x) of higher order.

Comment. With some more work, we find that the error is —%f(ﬁ)(a:)h‘l—i- O(hS) so that this is an approxi-
mation of order 4.

(¢) In short, this is because our approximation is an even function of h.

Because we started with an approximation of order 2, the Richardson extrapolation of A(h) and A(3h) has
at least order 3. However, A(h) is an even function of h (because A(—h)= A(h)). Consequently, A(3h) as
well as the extrapolation are even functions of h as well. Therefore, the error, which we know is of the form
Ch®+ Dh*+ O(h®), can only feature even powers of h. Thus C' =0 and the error must be of order at least 4.
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1=

1
Problem 10. Use the trapezoidal rule to approximate / ﬂ;ﬂdx =
0
(a) Use h:% and h:%.

(b) Using Richardson extrapolation, combine the previous two approximations to obtain an approximation of higher
order. What are absolute and relative error?

(¢) The extrapolated approximation is equivalent to the outcome of which method applied with h= %‘7

Solution. Let us write f(z)=—r

2l
1 (o h 1 2 9 1] 203
(a)h—g./ox2+1dxwg{f(0)+2f(§>+2f(§> ] [1+2 1—0+2 313 } 560 0.7808
1 /o h 1 1 1
n= et 10215 ) var(3 ) v2a(g ) +2s(5) +2a(5) + 100
1 36 9 4 9 11 2,761,249
_ﬁ[1+2'§+2'ﬁ+2'3+2'ﬁ+2 61+2] —3520920~0.7842

(b) Let us write A(h) = 323 nd A( ) % with A :% for our two approximations, and A* for the true value
of the integral. 7

Since A(h) is an approximation of order 2, we expect A(h) =~ A* + Ch? for some constant C.
Correspondingly, A( ) A+ Ch2 Hence, 4A( ) A(h)~(4—1)A*=3A*

Hence, the Richardson extrapolation is R ::%[4/1(%) — A(h)] :%[4'

2,761,249 203]_ 829,597 ) 7g530705.

3,520,020 260 | 1,056,276

Since the exact value is %x 0.78539816, the absolute error is |R — %‘ ~2.18 - 107 while the relative error is
(R—-3)/(5)|~2.78-1077.

(Of course, you will not have to calculate with numbers like the above by hand on the exam.)

(c) Simpson’s rule
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