Bonus: Euler's method applied to e^x

Example 143. Consider the IVP y' = y, y(0) = 1. Approximate the solution y(x) for $x \in [0, 1]$ using Euler's method with 4 steps. In particular, what is the approximation for y(1)?

Comment. Of course, the real solution is $y(x) = e^x$. In particular, $y(1) = e \approx 2.71828$.

Solution. The step size is $h = \frac{1-0}{4} = \frac{1}{4}$. We apply Euler's method with f(x, y) = y:

$$x_{0} = 0 y_{0} = 1$$

$$x_{1} = \frac{1}{4} y_{1} = y_{0} + f(x_{0}, y_{0})h = 1 + \frac{1}{4} = \frac{5}{4} = 1.25$$

$$x_{2} = \frac{1}{2} y_{2} = y_{1} + f(x_{1}, y_{1})h = \frac{5}{4} + \frac{5}{4} \cdot \frac{1}{4} = \frac{5^{2}}{4^{2}} = 1.5625$$

$$x_{3} = \frac{3}{4} y_{3} = y_{2} + f(x_{2}, y_{2})h = \frac{5^{2}}{4^{2}} + \frac{5^{2}}{4^{2}} \cdot \frac{1}{4} = \frac{5^{3}}{4^{3}} \approx 1.9531$$

$$x_{4} = 1 y_{4} = y_{3} + f(x_{3}, y_{3})h = \frac{5^{3}}{4^{3}} + \frac{5^{3}}{4^{3}} \cdot \frac{1}{4} = \frac{5^{4}}{4^{4}} \approx 2.4414$$

In particular, the approximation for y(1) is $y_4 \approx 2.4414$.

Comment. Can you see that, if instead we start with $h=\frac{1}{n}$, then we similarly get $x_i=\frac{(n+1)^i}{n^i}$ for i=0,1,...,n? In particular, $y(1)\approx y_n=\frac{(n+1)^n}{n^n}=\left(1+\frac{1}{n}\right)^n\to e$ as $n\to\infty$. Do you recall how to derive this final limit?

Example 144. (cont'd) Consider the IVP y' = y, y(0) = 1. Approximate the solution y(x) for $x \in [0, 1]$ using Euler's method with n steps for several values of n. In each case, what is the approximation for y(1)?

Solution. Since the real solution is $y(x) = e^x$ so that, in particular, the exact solution is $y(1) = e \approx 2.71828$. We proceed as we did in Example 143 in the case n = 4 and apply Euler's method with f(x, y) = y:

$$x_{n+1} = x_n + h$$

 $y_{n+1} = y_n + h \underbrace{f(x_n, y_n)}_{=y_n} = (1+h)y_n$

We observe that it follows from $y_{n+1}=(1+h)y_n$ that $y_n=(1+h)^ny_0$. Since $y_0=1$ and $h=\frac{1-0}{n}=\frac{1}{n}$, we conclude that

$$x_n = 1$$
, $y_n = \left(1 + \frac{1}{n}\right)^n$.

[For instance, for n=4, we get $x_4=1$, $y_4=\left(\frac{5}{4}\right)^4\approx 2.4414$ as in Example 143.]

In particular, our approximation for y(1) is $\left(1+\frac{1}{n}\right)^n$.

Here are a few values spelled out:

$$n = 1: \qquad \left(1 + \frac{1}{n}\right)^n = 2$$

$$n = 4: \qquad \left(1 + \frac{1}{n}\right)^n = 2.4414...$$

$$n = 12: \qquad \left(1 + \frac{1}{n}\right)^n = 2.6130...$$

$$n = 100: \qquad \left(1 + \frac{1}{n}\right)^n = 2.7048...$$

$$n = 365: \qquad \left(1 + \frac{1}{n}\right)^n = 2.7145...$$

$$n = 1000: \qquad \left(1 + \frac{1}{n}\right)^n = 2.7169...$$

$$n \to \infty: \qquad \left(1 + \frac{1}{n}\right)^n \to e = 2.71828...$$

We can see that Euler's method converges to the correct value as $n \to \infty$. On the other hand, we can see that it doesn't converge impressively fast. That is why, for serious applications, one usually doesn't use Euler's method directly but rather higher-order methods derived from the same principles (such as Runge-Kutta methods).

Interpretation. Note that we can interpret the above values in terms of compound interest. We start with initial capital of y(0) = 1 and we are interested in the capital y(1) after 1 year if we receive interest at an annual rate of 100%:

- If we receive a single interest payment at the end of the year, then y(1) = 2 (case n = 1 above).
- If we receive quarterly interest payments of $\frac{100\%}{4} = 25\%$ each, then $y(1) = (1.25)^4 = 2.441...$ (case n = 4).
- If we receive monthly interest payments of $\frac{100\%}{12} = \frac{1}{12}$ each, then y(1) = 2.6130... (case n = 12).
- If we receive daily interest payments of $\frac{100\%}{365} = \frac{1}{365}$ each, then y(1) = 2.7145... (case n = 365).

It is natural to wonder what happens if interest payments are made more and more frequently. Well, we already know the answer! If interest is compounded continuously, then we have e in our bank account after one year.

Taylor methods

(Taylor method of order k) The following is an order k method for solving IVPs:

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + f(x_n, y_n)h + \frac{1}{2}f'(x_n, y_n)h^2 + \dots + \frac{1}{k!}f^{(k-1)}(x_n, y_n)h^k$$

where $f^{(n)}(x,y)$ is short for $\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x,y(x))$ (expressed in terms of f and its partial derivatives).

For instance. $f'(x,y) = \frac{d}{dx} f(x,y(x)) = f_x(x,y) + f_y(x,y)y'(x) = f_x(x,y) + f_y(x,y)f(x,y)$

Especially for higher derivatives, it is easier to compute these for specific f. See next example.

Comment. As for Euler's method, being an order k method means that the method has a global error that is $O(h^k)$ (while the local truncation error is $O(h^{k+1})$; note that we can see this because we truncate the Taylor expansion of y(x) after h^k so that the next term is $O(h^{k+1})$.

Example 145. Spell out the Taylor method of order 2 for numerically solving the IVP

$$y' = \cos(x)y, \quad y(0) = 1.$$

Solution. The Taylor method of order 2 is based on the Taylor expansion

$$y(x+h) = y(x) + y'(x)h + \frac{1}{2}y''(x)h^2 + O(h^3),$$

where we have a local truncation error of $O(h^3)$ so that the global error will be $O(h^2)$. From the DE we know that $y'(x) = \cos(x)y$, which is f(x, y). We differentiate this to obtain

$$y''(x) = \frac{\mathrm{d}}{\mathrm{d}x}\cos(x)y = -\sin(x)y + \cos(x)y' = -\sin(x)y + \cos^2(x)y$$

= $(-\sin(x) + \cos^2(x))y$,

which is f'(x,y). Hence, the Taylor method of order 2 takes the form:

$$y_{n+1} = y_n + f(x_n, y_n)h + \frac{1}{2}f'(x_n, y_n)h^2$$

= $y_n + \cos(x_n)y_n h + \frac{1}{2}((-\sin(x_n) + \cos^2(x_n))y_n)h^2$

For any choice of h, we can therefore compute $(x_1, y_1), (x_2, y_2), \dots$ starting with (x_0, y_0) by the above recursive formula combined with $x_{n+1} = x_n + h$.

Example 146. Spell out the Taylor method of order 3 for numerically solving the IVP

$$y' = \cos(x)y, \quad y(0) = 1.$$

Solution. The Taylor method of order 3 is based on the Taylor expansion

$$y(x+h) = y(x) + y'(x)h + \frac{1}{2}y''(x)h^2 + \frac{1}{6}y'''(x)h^3 + O(h^4),$$

where we have a local truncation error of $O(h^4)$ so that the global error will be $O(h^3)$.

From the DE we know that $y'(x) = \cos(x)y$, which is f(x, y). As in the previous example, we differentiate this to obtain

$$y''(x) = \frac{d}{dx}\cos(x)y = -\sin(x)y + \cos(x)y' = -\sin(x)y + \cos^{2}(x)y$$

= $(-\sin(x) + \cos^{2}(x))y$,

which is f'(x,y). Once more differentiating this, we obtain

$$y'''(x) = \frac{d}{dx}(-\sin(x) + \cos^2(x))y$$

= $(-\cos(x) - 2\cos(x)\sin(x))y + (-\sin(x) + \cos^2(x))y'$
= $(\cos^2(x) - 3\sin(x) - 1)\cos(x)y$,

which is f''(x,y). Hence, the Taylor method of order 3 takes the form:

$$y_{n+1} = y_n + f(x_n, y_n)h + \frac{1}{2}f'(x_n, y_n)h^2 + \frac{1}{6}f''(x_n, y_n)h^3$$

= $y_n + \cos(x_n)y_n h + \frac{1}{2}((-\sin(x_n) + \cos^2(x_n))y_n)h^2 + \frac{1}{6}((\cos^2(x_n) - 3\sin(x_n) - 1)\cos(x_n)y_n)h^3$

Comment. The exact solution of this IVP is $y(x) = e^{\sin(x)}$. We use this in the next example for comparison.

Example 147. Python Let us use Python to approximate the solution y(x) of the IVP from the previous example for $x \in [0, 2]$.

Since the exact solution is $y(x) = e^{\sin(x)}$, we have $y(2) = e^{\sin(2)} \approx 2.48258$.

```
>>> taylor_3_cosy(0, 1, 2, 4)
```

[1, 1.625, 2.3475297541746047, 2.7350418255304874, 2.476391322837691]

For comparison, the exact values of the solution at these four steps are:

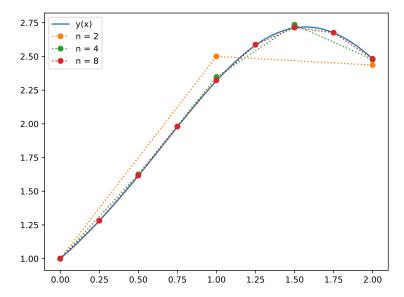
```
>>> [e**sin(i/2) for i in range(5)]
```

[1.0, 1.6151462964420837, 2.319776824715853, 2.7114810176821584, 2.4825777280150003]

The following convincingly illustrates that the error is indeed $O(h^3)$.

```
>>> [taylor_3_cosy(0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]
[2.5174222719849997, -0.0002461575553160955, -1.6375769584797695e-07, -1.5647971807197791e-10, 2.0339285811132868e-13]
```

The following is a plot of the exact solution together with our approximations when using 2, 4 and 8 steps. Already for 4 steps, we obtain an approximation that, at least visually, is remarkably good.



On the other hand, for comparison, the following plot shows the corresponding approximations when using Euler's method instead.

