
Notes for Lecture 26 Fri, 10/31/2025

Numerical integration (also known as quadrature)
To numerically integrate a function f(x) on an interval [a; b], one usually uses approximations of
the form Z

a

b

f(x)dx � w0f(x0)+ ���+wnf(xn)=
X
i=0

n

wif(xi);

where the points xi and the weights wi are chosen appropriately.
Comment. Such quadrature rules are typically judged by the maximal degree d of polynomials that they can
integrate without error. For instance, to correctly integrate constant functions (degree 0 polynomials), the weights
need to be such that they add up to b¡ a. (Why?!)

Common quadrature rules include:

� Newton�Cotes rules: equally spaced points xi
These are most useful if f(x) is already computed at equally spaced points, or if evaluation is fast.
There are closed Newton�Cotes rules and open ones. Open means that a and b are not part of the xi.

� Gaussian quadrature: the xi are not equally spaced but chosen carefully
Choosing the xi is similar to our discussion of Chebyshev nodes in polynomial interpolation.
Gaussian quadrature is particularly useful if f(x) is expensive to compute.

Comment. In the case of integrable singularities, such as in
R
0
1 1

x
p dx, we cannot use closed Newton�Cotes.

Because of time constraints, we will focus on the simplest example of a closed Newton�Cotes rule,
namely the trapezoidal rule.
We will then see that combining this with Richardson extrapolation, we can obtain higher order Newton�Cotes
rules such as Simpson's rule.

The (composite) trapezoidal rule

Given equally spaced nodes x0; x1; :::; xn with x0= a and xn= b, we interpolate f(x) on each
segment [xi¡1; xi] by a linear function. Writing h= (b¡ a)/n for the distance between nodes,
the resulting integration rule is the following:

(trapezoidal rule) The following is an approximation of order 2:Z
a

b

f(x)dx� h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]

Why? On each segment [xi¡1;xi], we approximate f(x) by a linear function so that the integral on that segment
becomes the area of a trapezoid and we getZ

xi¡1

xi
f(x)dx�width � average height

area

=h � f(xi¡1)+ f(xi)

2
=
h
2
f(xi¡1)+

h
2
f(xi):

Make a sketch! Adding together the integrals over all segments, each node (except x0 and xn) will show up
twice (hence the factor of 2 in front of f(x1); :::; f(xn¡1)) and we get the claimed integration rule. The fact
that the trapezoidal rule provides an approximation of order 2 is proved in Theorem 131 below.

Sanity check. Note that the weights are h

2
for the first and last node, and h for the others. The sum of the

weights is 2 � h
2
+(n¡ 1) �h=nh= b¡a. That is what we need to integrate constant functions without error.

Indeed, from the construction it is clear that the composite trapezoidal rule integrates linear functions exactly.
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Theorem 131. (trapezoidal rule with error term) If f is C2 smooth, thenZ
a

b

f(x)dx= h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]¡

(b¡ a)
12

f 00(�)h2

for some � 2 [a; b]. In particular, the trapezoidal rule is of order 2.

Proof. On each segment [xi¡1; xi], the error of the interpolation is

f(x)= linear approximation +
1
2
f 00(�)(x¡xi¡1)(x¡xi):

Hence, when integratingZ
xi¡1

xi
f(x)dx=

h
2
f(xi¡1)+

h
2
f(xi)

integral of linear approx.

+

Z
xi¡1

xi 1
2
f 00(�)(x¡xi¡1)(x¡xi)dx

errori

;

so that the error when integrating is

errori=
1
2
f 00( )

Z
xi¡1

xi

(x¡xi¡1)(x¡ xi)dx

=
R
0
hx(x¡h)dx=

h
1
3
x3¡h

2
x2

i
0

h
=¡1

6
h3

=¡ 1
12
f 00( )h3

where  is some value between xi¡1 and xi. Let us briefly justify the �pulling out� of f 00(�) even though �
depends on x. Note that (x¡xi¡1)(x¡xi) is always 60 in the integral and, therefore, does not change sign.
This means that the error integral lies between the corresponding integrals where we replace f 00(�) with its
maximum value M and minimum value L; the values M and L no longer depend on x and therefore can be
pulled out of the integral. The above computation then shows that errori is between ¡

1

12h
3M and ¡ 1

12h
3L,

hence must be equal to ¡ 1

12
h3m for some m2 [L;M ]. Since L and M are the minimum and maximum value

of f 00 on [xi¡1; xi], and since f 00 is continuous, it follows that m= f 00( ) for some  .
To get the overall error, we need to add the errors ¡ 1

12
f 00( i)h3 from each segment [xi¡1; xi], where i= 1;

2; :::; n and where  i2 [xi¡1; xi]. The result is

¡ 1
12
f 00( 1)h3+ ���+¡

1
12
f 00( n)h3=¡

nh
12

f 00( 1)+ ���+ f 00( n)
n

=average=f 00(�)

h2=¡b¡ a
12

f 00(�)h2;

where � is some value between a and b. �

Comment. A closer inspection of our proof shows that the f 00(�) in the error formula converges, as h! 0, to
the average value of f 00 on [a; b]. This means that we have a way to obtain an error estimate (rather than only
an error bound). This observation is also useful because it shows that the error is of a form that allows us to
perform Richardson extrapolation.
Advanced comment. Indeed, using the Euler�Maclaurin formula one can show that the error is

¡f
0(b)¡ f 0(a)

12
h2+

f 000(b)¡ f 000(a)
720

h4+ :::¡B2m
f (2m¡1)(b)¡ f (2m¡1)(a)

(2m)!
h2m+O(h6);

where the B2m are rational numbers known as Bernoulli numbers (provided, of course, that f is C2m¡1

smooth). The fact that only even powers of h show up reflects the fact that the trapezoidal rule is symmetric
(and therefore correctly integrates (x¡ c)n where c=(a+ b)/2 and n is odd).
Note that this more precise form of the error tells us that the Richardson extrapolation of the trapezoidal rule
will be of order 4 (rather than order 3).
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Example 132. Use to approximate
Z
1

31
x
dx= log(3)� 1.09861.

(a) Use the trapezoidal rule with h=1.

(b) Use the trapezoidal rule with h=1/2.

(c) Using Richardson extrapolation, combine the previous two approximations to obtain an
approximation of higher order. What are absolute and relative error?
Comment. We will see in the next section that this is equivalent to using Simpson's rule!

Solution. Let us write f(x)= 1

x
.

(a)
Z
1

3

f(x) dx� h
2
[f(1)+2f(2)+ f(3)]=

1
2

�
1+2 � 1

2
+
1
3

�
=
7
6
� 1.1667

Comment. Make a sketch! Can you explain why our approximation (for any h) will be an overestimate
of the true value of the integral?

(b)
Z
1

3

f(x) dx� h
2

�
f(1)+2f

�
3
2

�
+2f(2)+2f

�
5
2

�
+ f(3)

�
=
1
4

�
1+2 � 2

3
+2 � 1

2
+2 � 2

5
+
1
3

�
=
67
60
� 1.1167

Comment. Note that the previous error
������log(3)¡ 7

6

�������0.068 (h=1) is roughly 3.8 times as large as our

current error
������log(3)¡ 67

60

�������0.018 (h=1/2). Since 3.8� 4, this is in line with what we expect from an

order 2 method (in general, we can only expect to observe this for sufficiently small h).

(c) Let us write A(h) and A
�
h

2

�
for our two approximations, and A� for the true value of the integral.

Since A(h) is an approximation of order 2, we expect A(h)�A�+Ch2 for some constant C.

Correspondingly, A
�
h

2

�
�A�+ 1

4
Ch2. Hence, 4A

�
h

2

�
¡A(h)� (4¡ 1)A�=3A�.

Therefore, the Richardson extrapolation is 1
3

h
4A

�
h

2

�
¡A(h)

i
=
1

3

h
4 � 6760 ¡

7

6

i
=

11
10 = 1.1.

The absolute error is j1.1¡ log(3)j � 0.00139 and the relative error is
������1.1¡ log(3)

log(3)

������� 0.00126.

Comment. Note that 1
3

h
4A

�
h

2

�
¡A(h)

i
=
h

3

h
f(1)+4f

�
3

2

�
+2f(2)+4f

�
5

2

�
+ f(3)

i
. These are the

precisely the weights of Simpson's rule.

(Halloween scare!) � is the perimeter of a circle enclosed in a square
with edge length 1. The perimeter of the square is 4, which approxi-
mates �. To get a better approximation, we �fold� the vertices of the
square towards the circle (and get the blue polygon). This construction
can be repeated for even better approximations and, in the limit, our
shape will converge to the true circle. At each step, the perimeter is
4, so we conclude that �=4, contrary to popular belief.

Can you pin-point the fallacy in this argument?
(We are not doing something completely silly! For instance, the areas of our approximations do converge to �/4,
the area of the circle.)

We will talk about a �solution� to the Halloween scare later. . .
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