
Notes for Lecture 20 Fri, 10/17/2025

Review. The Newton form of the polynomial interpolating f(x) at x= x0; x1; ::: is

f [x0] + f [x0; x1](x¡ x0)+ f [x0; x1; x2](x¡x0)(x¡x1)+ f [x0; x1; x2; x3](x¡x0)(x¡x1)(x¡x2)+ :::

Comparing this to the Taylor expansion of f(x) at x= x0, which is

f(x0)+ f 0(x0)(x¡x0)+ 1

2!
f 00(x0)(x¡ x0)2+ 1

3!
f 000(x0)(x¡ x0)3+ :::;

it is not surprising that, as we showed, f [x0; x1; :::; xn] =
1

n!
f (n)(�) for some � between the xi.

Recall that, if Pn(x) is the Taylor polynomial of order n, then the error term is f (n+1)(�)

(n+1)!
(x¡x0)n+1.

Likewise, if Pn(x) is the interpolating polynomial for f(x) at x0; x1; :::; xn, then

f(x)=Pn(x)+
f (n+1)(�)
(n+1)!

(x¡ x0)(x¡ x1)���(x¡ xn)

error term

for some � between the xi and x.

Chebyshev interpolation

In this section it will be convenient to use x1; :::; xn rather than x0; x1; :::; xn.

As reviewed above, if Pn¡1(x) is the interpolating polynomial for f(x) at x1; :::; xn, then

f(x)¡Pn¡1(x)=
f (n)(�)
n!

(x¡x1)���(x¡xn)

interpolation error

for some � between the xi and x.

Suppose we wish to minimize the maximal error on some interval [a; b]. After shifting and scaling,
we can normalize this interval to the interval [¡1; 1].
It therefore is natural to choose x1; :::; xn such that max

x2[¡1;1]
j(x¡x1)���(x¡xn)j is minimized.

Amazingly, in Theorem 100, we will be able to say exactly for which choice of xi this happens!

Example 98. For small n, choose x1;x2; :::;xn such that max
x2[¡1;1]

j(x¡x1)���(x¡xn)j is minimal.

Solution. In the cases below, we will appeal to symmetry and assume that the optimal nodes must be such that
x1=¡xn, x2=¡xn¡1, .... As such, the arguments only prove that our choices are optimal if that assumption
is correct. In hindsight, from our general proof in Theorem 100, this will prove to be correct.

� n=1: By symmetry, the optimal choice should be x1=0.

� n=2: By symmetry, x1=¡x2. Write c= x2 and let f(x)= (x+ c)(x¡ c)=x2¡ c2.
Since f 0(x) = 2x= 0 only if x= 0, it follows that maxx2[¡1;1] jf(x)j has to occur at x= 0 or at the
endpoints x=�1. The corresponding values are jf(0)j= c2, jf(�1)j=1¡ c2.
From a plot of m(c)=max(c2;1¡c2) it is clear that the minimum of m(c) is achieved when c2=1¡c2.
This latter equation has the unique positive solution c= 2

p

2
= cos

¡ �
4

�
.

Note that the xi are cos
¡ �
4

�
2

p
/2

; cos
�
3�

4

�
¡ 2
p

/2

� 0.7071.
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� n=3: By symmetry, x1=¡x3 and x2=0. Write c= x3 and let f(x)= (x+ c)x(x¡ c)= x(x2¡ c2).
Since f 0(x)=3x2¡ c2=0 only if x=� c

3
p , it follows thatmaxx2[¡1;1] jf(x)j has to occur at x=�

c

3
p

or at the endpoints x=�1. The corresponding values are
��������f� c

3
p

���������= jcj
3

p
�
2c2

3

�
=
2jcj3

3 3
p , jf(�1)j=1¡c2.

From a plot of m(c) = max
�
2jcj3

3 3
p ; 1 ¡ c2

�
it is clear that the minimum of m(c) is achieved when

2jcj3

3 3
p =1¡ c2. This latter equation has the unique positive solution c= 3

p

2
= cos

¡ �
6

�
.

Note that the xi are cos
¡ �
6

�
3

p
/2

; cos
�
3�

6

�
0

; cos
�
5�

6

�
¡ 3
p

/2

.

� n=4: The pattern continues and the xi turn out to be cos
¡ �
8

�
; cos

�
3�

8

�
; cos

�
5�

8

�
; cos

�
7�

8

�
.

Comment. We have the less familiar trig values cos
¡ �
8

�
=
1

2
2+ 2

pq
and cos

�
3�

8

�
=
1

2
2¡ 2

pq
.

Example 99. (bonus!) Suppose we are doing interpolation on the interval [¡1; 1] and we want
the endpoints to be interpolation nodes; that is, x1=¡1 and xn=1. Choose the remaining nodes
such that max

x2[¡1;1]
j(x¡x1)���(x¡xn)j is minimal.

Do this for n=3; 4; 5 to collect a bonus point.
An extra bonus point if you can figure out what happens for any n? (Hint: compare with the Chebyshev case.)

Theorem 100. (Chebyshev's theorem) For the Chebyshev nodes

xj= cos
�
(2j ¡ 1)
2n

�

�
; j=1; :::; n;

we have

max
x2[¡1;1]

j(x¡x1)���(x¡xn)j=
1

2n¡1
:

That value is the minimal value for any choice of roots x1; :::; xn.

The corresponding polynomials Tn(x) = 2n¡1(x¡ x1)���(x¡ xn) are known as the Chebyshev
polynomials of the first kind.
Note that these are scaled by 2n¡1 so that the maximum is 1.

Proof. We will show below that Tn(cos(�))= cos(n�), which implies that jTn(x)j61 for all x2 [¡1; 1].
Moreover, at x= cos

¡
k
�

n

�
for k=0; 1; :::; n the values of Tn(x) alternate between 1 and ¡1.

Write Pn(x)= (x¡x1)���(x¡xn). It follows that max
x2[¡1;1]

jPn(x)j= 1

2n¡1
as claimed.

Suppose that there is a polynomial Qn(x)= (x¡ r1)���(x¡ rn) for which max
x2[¡1;1]

jQn(x)j< 1

2n¡1
.

Note that d(x) :=Pn(x)¡Qn(x) has the following properties:

� d(x) is of degree at most n¡ 1 (because the xn terms cancel).

� At x= cos
¡
k
�

n

�
for k=0; 1; :::; n the values of d(x) alternate between + and ¡.

(Because Pn(x)=�
1

2n¡1
while jQn(x)j<

1

2n¡1
.)

� Hence, between these n+1 values, there must be n zeros. That is impossible because d(x) has degree
less than n.

This contradiction shows that no such polynomial Qn(x) can exist. �
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The following is Theorem 92 combined with Chebyshev's Theorem 100.

Theorem 101. (interpolation error using Chebyshev nodes) If Pn¡1 is the interpolating
polynomial for f at n Chebyshev nodes, then the interpolation error can be bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6
1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j:

Fine print. As in Theorem 92, we need that f is n times continuously differentiable.
Comment. Theorem 101 guarantees convergence, as n!1, of the interpolating polynomials Pn to f provided
that the derivatives of f don't grow too fast. On the other hand, one can show that, for certain functions f ,
no sequence of interpolating polynomials will converge to f .

Advanced comment. Theorem 101 can be interpreted as showing that, for a given function f , the Chebyshev
interpolant Pn is a good approximation of f on the interval [¡1; 1]. However, that does not mean that it is the
best polynomial approximation of degree n (in the sense of minimizing the maximal error). One can show that
there exists a unique such best polynomial Bn. However, Bn is difficult to compute. On the other hand, the
Chebyshev interpolant Qn is close to best in the sense that

max
x2[¡;1;1]

jf(x)¡Qn(x)j6
�
4+

4

�2
log(n)

�
max

x2[¡;1;1]
jf(x)¡Bn(x)j:

Example 102. Suppose we approximate a function f(x) on the interval [¡1; 1] by a polynomial
interpolation P (x). Suppose we know that jf (n)(x)j6n for all x2 [¡1; 1].

(a) Give an upper bound for the maximal error if we use the interpolation nodes ¡1;¡1

3
;
1

3
;1.

(b) Give an upper bound for the maximal error if we use 4 Chebyshev nodes instead.

(c) How many Chebyshev nodes do we need to use in order to guarantee that the maximal
error is at most 10¡3?

Solution.

(a) This is the same problem as in the last part of Example 94.

Our bound for the error was max
x2[¡1;1]

jf(x)¡P (x)j6 1

6
max

x2[¡1;1]

��������(x2¡ 1)�x2¡ 1

9

���������= 1

6
� 16
81
�0.0329.

(b) By Theorem 100, max
x2[¡1;1]

j(x¡ x1)���(x¡ xn)j= 1

2n¡1
for Chebyshev nodes. In our case, n=4.

Therefore, our bound for the error is jf(x)¡P (x)j6 1
6

1

24¡1
=

1
48
� 0.0208.

(c) By Theorem 101, using n Chebyshev nodes, the error is bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6 1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j6 1

2n¡1 (n¡ 1)! .

We thus need to choose n so that 2n¡1 (n¡ 1)!>103.
Computing 2n¡1 (n ¡ 1)! for n= 1; 2; :::, we obtain 1; 2; 8; 48; 384; 3840. Thus, for n= 6 Chebyshev
nodes the maximal error is guaranteed to be less than 10¡3.
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Comment. Note that the bound for 4 Chebyshev nodes is better than the one for the same number of equally
spaced points. Indeed, for the Chebyshev nodes, such an error estimate is best possible. In the plots below, we
can see the difference between (x¡x1)���(x¡xn) in the case of equally spaced xi and Chebyshev nodes xi (in
dotted). The first plot shows the case n=4 and the difference is moderate. The difference becomes very visible
in the second plot which shows the case n = 8. We can see how, for the equally spaced nodes, we get large
(negative) values towards the endpoints of [¡1;1] while, for the Chebyshev nodes, there are no such wild swings.
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Example 103. Python Let us redo Example 97 but with Chebyshev nodes instead of equally
spaced interpolation nodes.

>>> def chebyshev_nodes(n):
return [cos((2*j+1)*pi/(2*n)) for j in range(n)]

>>> chebyshev_nodes(3)

[0.8660254037844387, 6.123233995736766e-17, -0.8660254037844387]

We observed in Example 97 that the maximal interpolation error for the Runge function f(x) =
1/(1+25x2) did not go down as we increased the number of (equally spaced) interpolation nodes.

>>> def f(x):
return 1/(1+25*x**2)

>>> [max_interpolation_error(f, -1, 1, chebyshev_nodes(n), 100) for n in range(2,18)]

[0.92338165562264884, 0.60057189596611948, 0.74778034684079508, 0.40195613012685899,
0.5534788672877784, 0.26410513077643449, 0.38946847488552683, 0.17006563147899745,
0.26712486571968486, 0.10902564197574982, 0.1809557278548104, 0.06902642915187851,
0.12185501126173093, 0.0460893689663045, 0.081815311151541836, 0.032580232210393967]

Unlike in Example 97, these values suggest that, by increasing the number of Chebyshev nodes,
the maximal interpolation error will go to zero.

For comparison with Example 97, below are the plots are for 10 and 12 interpolation nodes.

Comment. Note how we no longer have oscillations towards the endpoints of the interval. These plots also
reveal why (as we can see from the above list of maximal errors) an even number of Chebyshev nodes leads to a
relatively worse interpolation error compared to an odd number. (Namely, for an odd number of nodes, we have
a node at x=0, the peak of our function; while, for an even number of nodes, that peak is underestimated by
the interpolation.)
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Bonus material: Chebyshev polynomials

As introduced after Chebyshev's Theorem 100, the Chebyshev polynomials of the first kind are

Tn(x)= 2n¡1(x¡x1)���(x¡xn); xj= cos
�
(2j ¡ 1)
2n

�

�
:

These are scaled by 2n¡1 so that the maximum is 1. Indeed, Tn(1)= 1.

We can see in the following plot of Tn(x) for n 2 f1; 2; 3; 4g that the Chebyshev polynomials
alternate between the values �1. The goal of this section is to prove this and other properties.
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Review. (trig identities through Euler) By Euler's identity, ei�= cos(�)+ i sin(�). In other
words, cos(�)=Re(ei�) and sin(�)= Im(ei�) are �parts� of the exponential function.

All of the trig function identities can then be obtained from simpler identities of the exponential function.

For instance, the exponential function satisfies eA+B= eAeB. For the cosine, this relation translates into

cos(�+ �)=Re(ei�ei�)=Re(cos(�)+ i sin(�)(cos(�)+ i sin(�)))= cos(�)cos(�)¡ sin(�)sin(�):
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Theorem 104. The Chebyshev polynomials Tn(x) of the first kind satisfy:

(a) Tn(cos(�))= cos(n�)
Equivalently, Tn(x)= cos(n arccos(x)).

(b) Tn(x)= 2xTn¡1(x)¡Tn¡2(x)
This Fibonacci-like recursive relation together with T0(x)= 1 and T1(x)= x characterizes Tn(x).

Proof.

(a) It follows from trig identities (see the first part of the next example) that cos(n�) can be written as
a polynomial in cos(�). In other words, there is a (unique) polynomial pn(x) such that cos(n�) =
pn(cos(�)). We need to show that Tn(x)= pn(x). Since both are polynomials of degree n, this follows
if we can show that they agree at n+1 points.

By definition, for j 2f1; 2; :::; ng, Tn(x) has a root at xj= cos(�j) where �j=
(2j ¡ 1)
2n

�.

On the other hand, pn(xj)= p(cos(�j))= cos(n�j)= cos
��
j ¡ 1

2

�
�
�
=0.

Tn(x) and pn(x) therefore have the same n roots. It follows that they are the same if they have the
same leading coefficient. For Tn(x) it is clear from the definition Tn(x)=2n¡1(x¡x1)���(x¡xn) that
the leading coefficient is 2n¡1. That the same is true for pn(x) follows from the recursive relation for
pn(x) that we show in the second part.

(b) It follows from the trig identity cos(�+ �)=cos(�)cos(�)¡ sin(�)sin(�) (which we derived above) that

cos((n+1)�) = cos(n�+ �)= cos(n�)cos(�)¡ sin(n�)sin(�);
cos((n¡ 1)�) = cos(n�¡ �)= cos(n�)cos(�)+ sin(n�)sin(�);

where we used that sin(¡�) =¡sin(�) for the last term. Adding these two, and then writing Tn(x) =
cos(n�) with �= arccos(x), we obtain

cos((n+1)�)

Tn+1(x)

+ cos((n¡ 1)�)
Tn¡1(x)

=2cos(n�)
Tn(x)

cos(�)
x

;

which is the claimed recursive relation. �

Example 105. Determine the first few Chebyshev polynomials Tn(x).
Solution. (using cosines) We use Tn(x) = cos(n�) with x = cos(�) combined with Euler's identity ei� =
cos(�)+ i sin(�) as well as the trig identity cos(�)2+ sin(�)2=1.

� e2i�=(ei�)2=(cos(�)+ i sin(�))2 has real part cos(2�)= cos(�)2¡ sin(�)2=2cos(�)2¡ 1.
Hence T2(x)= 2x2¡ 1.

� e3i�=(cos(�)+ i sin(�))3 has real part cos(3�)= cos(�)3¡ 3cos(�)sin(�)2=4cos(�)3¡ 3cos(�).
Hence T3(x)= 4x3¡ 3x.

Solution. (using recursion) Starting with T0(x)= 1 and T1(x)= x, we apply Tn(x)= 2xTn¡1(x)¡Tn¡2(x)
to compute T2(x); T3(x); :::

� T2(x)= 2xT1(x)¡T0(x)= 2x2¡ 1

� T3(x)= 2xT2(x)¡T1(x)= 2x(2x2¡ 1)¡x=4x3¡ 3x

� T4(x)= 2xT3(x)¡T2(x)= 2x(4x3¡ 3x)¡ (2x2¡ 1)= 8x4¡ 8x2+1

� . . .
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