Notes for Lecture 19 Wed, 10/15/2025

Example 96. | Python | The following code measures how well a function f is approximated by
the polynomial interpolating f at the given points. It returns an approximation of the maximal
error on the interval [a,b].

>>> from numpy import linspace, pi, cos, sin
>>> from scipy import interpolate

>>> def max_interpolation_error(f, a, b, xpoints, nr_sample_points)
ypoints = [f(x) for x in xpoints]
poly = interpolate.lagrange(xpoints, ypoints)
max_error = max([abs(f(x)-poly(x)) for x in linspace(a,b,nr_sample_points)])

return max_error
Let us verify that this works using an example we have discussed before:

>>> max_interpolation_error(sin, 0, pi, [0,pi/2,pil, 100)

0.0560067197786
This agrees with the maximal error that we observed at the end of Example 93. Let us look how
the error develops as we add more points:

>>> [max_interpolation_error(sin, O, pi, linspace(O,pi,n), 100) for n in range(2,9)]

[0.99987412767387496, 0.056006719778558423, 0.043613266903306247,
0.0018097268033398783, 0.0013114413108160916, 3.385907546618605e-05,
2.4246231325325551e-05]

It is pleasing to see that the error decreases. However, as we will see in the next example, this

does not have to be the case.

Comment. Note that the error seems to really decrease every second step (i.e. after adding two more points).
Can you offer an explanation for what might be the cause of this?

Example 97. | Python | However, this is not the end of the story. It turns out that the interpolation
error does not always go down if we add additional points.

>>> def f(x)
return 1/(1+25%x**2)

>>> [max_interpolation_error(f, -1, 1, linspace(-1,1,n), 100) for n in range(2,18)]

[0.9589941912351845, 0.6459699748665507, 0.7044952736346626, 0.4382728746134098,
0.43032461596244886, 0.6164015686420344, 0.24528527039305037, 1.0450782163781276,
0.297971540151836, 1.9154342696798625, 0.5538529081657272, 3.6117015978042333,
1.064460371610917, 7.189298472061041, 2.0967229089912, 14.013534491466531]

: 1 . . .
The function f(x) =155z N this example is known as the Runge function and one can show

that, by adding more points, the error grows without bound.

lim max } |f(z) — Py(x)]| =00

n—oor€[—,1,1

https://en.wikipedia.org/wiki/Runge’,27s_phenomenon

Armin Straub 59
straub@southalabama.edu

https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
https://en.wikipedia.org/wiki/Runge%27s_phenomenon

The following plots show the situation using 10 and 12 interpolation nodes.

1.0

0.81

0.6 9

0.4+

0.2

o

0.04

-0.2

1]

-1.00 -0.75 -0.50 -0.25 0.00

0.25

0.50

0.75

1.00

1.0

0.8

0.6 1

0.44

0.2+

0.0

8,

-1.00

-0.75

—-0.50

-0.25

0.00 0.25 0.50 0.75 1.00

While the approximation becomes better towards the center of the interval [—1, 1], the oscillations
towards the ends of the interval become more violant (resulting in an increasing worst-case error).

Next, we will see that we can avoid this issue if we don’t choose equally spaced points but carefully
chosen ones called Chebyshev nodes.

Armin Straub
straub@southalabama.edu

60

