
Notes for Lecture 18 Mon, 10/13/2025

Example 89. Python numpy and scipy are powerful scientific libraries for Python. While numpy
provides core functionality, scipy implements more specialized routines such as interpolation.

>>> from numpy import linspace, pi, sin

>>> from scipy import interpolate

Comment. We previously used the sin function available in the math Python standard library. The numpy library
offers its own sin function with additional features. For instance, try sin([1,2]). This evaluates sin(x) at
both x=1 and x=2. On the other hand, this results in an error with the sin function not from numpy.

Let us interpolate f(x) = sin(x) using 3 points, namely x0 = 0, x1 =
�

2
, x2 = �. We begin by

making lists of the x and y values as follows:

>>> xpoints = [0, pi/2, pi]

>>> ypoints = [sin(x) for x in xpoints]

Comment. As pointed out in the previous comment, we can even simply use ypoints = sin(xpoints). (The
result would be a numpy array instead of a standard list but, for basic purposes, these behave alike. The numpy
library introduces and uses arrays for additional features and performance for scientific computations.)

Let us check that xpoints and ypoints hold the expected values:

>>> xpoints

[0, 1.5707963267948966, 3.141592653589793]

>>> ypoints

[0.0, 1.0, 1.2246467991473532e-16]

We now ask scipy to create the interpolating polynomial:

>>> poly = interpolate.lagrange(xpoints, ypoints)

The resulting polynomial can be evaluated at any other point (such as x = � /4) and we can
access its coefficients (which tell us that the polynomial is approximately ¡0.41x2+ 1.27x):

>>> poly(pi/4)

0.75

>>> sin(pi/4)

0.7071067811865475

>>> poly.coeffs

[-0.40528473456935116, 1.2732395447351628, 0.0]

Homework. Show that the exact interpolation polynomial is 4

�
x¡ 4

�2
x2.

Finally, let us plot the sine function together with the polynomial interpolation. In the code below
we use matplotlib, a powerful and widely used plotting library.

>>> import matplotlib.pyplot as plt

>>> xplot = linspace(0, pi, 100)

>>> plt.plot(xpoints, ypoints, 'o', xplot, sin(xplot), '-', xplot, poly(xplot), ':')

>>> plt.show()

Armin Straub
straub@southalabama.edu

53

Comment. Note that we are making three plots in one line here (namely, we plot the three points, we plot sine,
and we plot the polynomial interpolation).
To plot just sine, simplify the plot command to plt.plot(xplot, sin(xplot), '-'). The '-' connects the
100 points (with x-coordinates from xplot) by a line. Replace it, for instance, with 'r-.' to get a red dotted line.
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

The resulting output should look as follows:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

This shows pretty decent interpolation on the interval [0; �].
Which function is which?! (You can tell from the fact that we dotted one graph or from the plots below.)

On the other hand, here are the same plots on
h
¡�

2
;
3�

2

i
and [¡�; 2�]:

1 0 1 2 3 4 5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

2 0 2 4 6

8

6

4

2

0

Homework. Adjust our code above (only the line linspace(0, pi, 100) needs to be changed) to produce
these two plots.

As we can see (and as we probably expected), the polynomial interpolation does not approximate
the sine function well outside the interval [0; �].
Comment. Given the three interpolation points 0; � /2; �, an attempt to approximate the function at values
much less than 0 or much larger than � (that is, outside of the range of our data) is typically referred to as
extrapolation.

Armin Straub
straub@southalabama.edu

54

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

Example 90. (review) Determine the minimal polynomial interpolating (0; 1); (1; 2); (2; 5).
Solution. (Lagrange, review) The interpolating polynomial in Lagrange form is:

p(x) = 1
(x¡ 1)(x¡ 2)
(0¡ 1)(0¡ 2) + 2

(x¡ 0)(x¡ 2)
(1¡ 0)(1¡ 2) + 5

(x¡ 0)(x¡ 1)
(2¡ 0)(2¡ 1)

=
1
2
(x¡ 1)(x¡ 2)¡ 2x(x¡ 2)+ 5

2
x(x¡ 1)

= x2+1

Solution. (Newton, divided differences)

0: 1
2¡ 1
1¡ 0 =1

1: 2
3¡ 1
2¡ 0 =1

5¡ 2
2¡ 1 =3

2: 5

Accordingly, reading the coefficients from the top edge of the triangle:

p(x)= 1+1(x¡ 0)+ 1(x¡ 0)(x¡ 1)= x2+1

A mean value theorem for divided differences

Review. Themean value theorem (see Theorem 55; the special caseM=0 of Taylor's theorem)
states that, if f(x) is differentiable, then

f [a; b] = f(b)¡ f(a)
b¡ a = f 0(�)

for some � between a and b.

Recall that the Newton form of the polynomial interpolating f(x) at x= x0; x1; ::: is

f [x0] + f [x0; x1](x¡ x0)+ f [x0; x1; x2](x¡x0)(x¡x1)+ f [x0; x1; x2; x3](x¡x0)(x¡x1)(x¡x2)+ :::

Note that this is somewhat similar to the Taylor expansion of f(x) at x= x0, which is

f(x0)+ f 0(x0)(x¡x0)+ 1

2!
f 00(x0)(x¡ x0)2+ 1

3!
f 000(x0)(x¡x0)3+ :::

Indeed, if all the xj are equal to x0 (this is technically not allowed when interpolating, but you can still think of
choosing them all close to x0), then the Newton form would turn into a Taylor polynomial.
In that case, f [x0; x1; :::; xn] would become 1

n!
f (n)(x0).

With that (as well as the mean value theorem and Taylor's theorem (see Theorem 54)) in mind,
the next result does not come as a surprise.

Armin Straub
straub@southalabama.edu

55

Theorem 91. (mean value theorem for divided differences) If f(x) is differentiable, then

f [x0; x1; :::; xn] =
f (n)(�)
n!

for some � between the smallest and the largest of the xi.

Proof. Without loss of generality, we may assume that x0<x1< ���<xn (because divided differences do not
depend on the ordering of the points xi).
Let P (x) be the interpolation polynomial for f at x0; x1; :::; xn. Then d(x) = f(x)¡ P (x) has n+ 1 zeros,
namely x0; x1; :::; xn. The mean value theorem implies that between any two zeros of a function, there must
be a zero of its derivative (this is often referred to as Rolle's theorem). It therefore follows that d0(x) has n
zeros (between x0 and xn). Applying the same argument to d0(x), we then find that d00(x) has n ¡ 1 zeros.
Continuing like this, d(n)(x) must have a zero � between x0 and xn. As such,

0= d(n)(�)= f (n)(�)¡P (n)(�):

Recall that P (x) is a polynomial of degree n or less, and that its Newton form is

P (x)= c0+ c1(x¡ x0)+ c2(x¡x0)(x¡x1)+ :::+ cn(x¡x0)(x¡x1)���(x¡xn¡1);

where cj= f [x0; x1; :::; xj]. Note that P (n)(x)=n!cn=n!f [x0; x1; :::; xn]. We therefore conclude that

0= d(n)(�)= f (n)(�)¡P (n)(�)= f (n)(�)¡n!f [x0; x1; :::; xn];

which proves the claim. �
Comment. Note that this provides us with a way to numerically approximate an nth derivative f (n)(x). Namely,
choose n+1 points x0; x1; :::; xn near x. Then f (n)(x)�n!f [x0; x1; :::; xn]

=f (n)(�)

.

Bounding the interpolation error

Theorem 92. (interpolation error) Suppose that f(x) is n+ 1 times continuously differen-
tiable. Let Pn(x) be the interpolating polynomial for f(x) at x0; x1; :::; xn. Then

f(x)¡Pn(x)=
f (n+1)(�)
(n+1)!

(x¡x0)(x¡x1)���(x¡xn)

interpolation error

for some � between the smallest and the largest of the xi together with x.

Proof. Let Pn+1(x) be the interpolating polynomial for f(x) at x0; x1; :::; xn; xn+1. We know that

Pn+1(x) = Pn(x)+ f [x0; x1; :::; xn+1](x¡ x0)(x¡ x1)���(x¡ xn)

= Pn(x)+
f (n+1)(�)
(n+1)!

(x¡x0)(x¡x1)���(x¡ xn)

for some � between the smallest and the largest of the xi together with x.
Given any fixed value t, choose xn+1= t in this formula (so that Pn+1(t)= f(t)) to conclude that

f(t)=Pn+1(t)=Pn(t)+
f (n+1)(�)
(n+1)!

(t¡ x0)(t¡ x1)���(t¡ xn);

which (after subtracting Pn(t) from both sides) is the claimed expression for the error term (with x replaced by
t). �

Armin Straub
straub@southalabama.edu

56

Example 93. Suppose we approximate f(x)= sin(x) by the polynomial P (x) interpolating it at
x=0; �

2
; �. Without computing P (x), give an upper bound for the error when x= �

4
.

[Compare with Example 89 where we computed and plotted P (x).]

Solution. By Theorem 92, the error is

sin(x)¡P (x)= f (3)(�)
3!

(x¡ 0)
�
x¡ �

2

�
(x¡�);

where � is between 0 and � (provided that x is in [0; �]). Note that f (3)(x) =¡cos(x) so that jf (3)(�)j61.
Hence, the error is bounded by

jsin(x)¡P (x)j6 1
6

������x�x¡ �
2

�
(x¡�)

������:
In particular, in the case x= �

4
,������sin��
4

�
¡P

�
�
4

�������6 1
6

���������4�¡�4 ��
¡3�
4

���������= �3

128
� 0.242:

For comparison. In this particularly simple case, we can easily calculate the exact error.

Namely, since sin
¡ �
4

�
=

1

2
p and P

¡ �
4

�
=
3

4
(see Example 89), the actual error is

����sin¡ �
4

�
¡P

¡ �
4

������ 0.0428.

Below is a plot of the actual error (in blue) together with our bound (dotted).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

Homework. Following what we did in Example 89, try to reproduce this plot.

For which x in [0; �] is our bound for the error maximal? What is the bound in that case?

Solution. Recall that our bound for the error is 1
6

����x¡x¡ �

2

�
(x¡�)

����.
x
¡
x¡ �

2

�
(x¡�) is maximal on [0; �] for x=

�
1� 1

3
p

�
�

2
� 0.664; 2.478. (Fill in the details!)

The corresponding error bound is 1

72 3
p �3� 0.249.

Comment. Note that this shows that our earlier error bound for x = �

4
� 0.785 was close to the worst case.

That is not too much of a surprise since �

4
sits right between 0 and �

2
for which the error is 0 by construction.

For comparison. The actual maximal error occurs when cos(x)¡ 4

�
+

8

�2
x=0. (Why?!)

The approximate solutions are x� 0.472; 2.670 with corresponding (actual) error of 0.0560.
Make sure that you can identify both the x values and the error in the above plot.

Armin Straub
straub@southalabama.edu

57

Example 94. (homework) Suppose we approximate a function f(x) by the polynomial P (x)
interpolating it at x=¡1;¡1

3
;
1

3
; 1. Suppose that we know that jf (n)(x)j6n for all x2 [¡1; 1].

(a) Give an upper bound for the error when x=¡2

3
.

(b) Give an upper bound for the error when x=0.

(c) Give an upper bound for the error for all x2 [¡1; 1].

Solution. By Theorem 92, the error is

f(x)¡P (x)= f (4)(�)
4!

(x+1)

�
x+

1
3

��
x¡ 1

3

�
(x¡ 1)= f (4)(�)

4!
(x2¡ 1)

�
x2¡ 1

9

�
;

where � is between ¡1 and 1 (provided that x2 [¡1; 1]). Since 1

4!
jf (4)(�)j6 4

4!
=
1

6
, the error is bounded by

jf(x)¡P (x)j6 1
6

��������(x2¡ 1)�x2¡ 1
9

���������:
(a) If x=¡2

3
, then this bound becomes jf(x)¡P (x)j6 1

6

������(x2¡ 1)�x2¡ 1

9

�������= 1

6
� 527 � 0.0309.

(b) If x=0, then this bound becomes jf(x)¡P (x)j6 1

6

������(x2¡ 1)�x2¡ 1

9

�������= 1

6
� 1
9
� 0.0185.

Comment. It is not surprising that this error bound is better than the one for x = ¡2

3
since, roughly

speaking, there are more interpolation nodes around 0.

(c) Consider g(x)= (x2¡ 1)
�
x2¡ 1

9

�
=x4¡ 10

9
x2+

1

9
. We need to compute max

x2[¡1;1]
jg(x)j.

Since g(�1)=0, the maximum value of jg(x)j must be attained at a point where g 0(x)= 0.

We compute g 0(x)= 4x3¡ 20
9
x. Hence g 0(x)= 0 if x=0 or x=� 5

p

3
.

Since jg(0)j= 1

9
and

������g�� 5
p

3

�������= 16
81
>
1

9
, we conclude that max

x2[¡1;1]
jg(x)j= 16

81
.

Thus, our error bound is max
x2[¡1;1]

jf(x)¡P (x)j6 1
6

max
x2[¡1;1]

��������(x2¡ 1)�x2¡ 1
9

���������= 1
6
� 16
81
� 0.0329.

Example 95. Python We can approximate
1
6

max
x2[¡1;1]

��������(x2¡1)�x2¡ 1
9

���������= 1
6
� 16
81
�0.0329 as

follows using 100 points.

>>> from numpy import linspace

>>> max([1/6*abs((x**2-1)*(x**2-1/9)) for x in linspace(-1,1,100)])

0.0328984640831

Armin Straub
straub@southalabama.edu

58

