Notes for Lecture 18 Mon, 10/13/2025

Example 89. numpy and scipy are powerful scientific libraries for Python. While numpy
provides core functionality, scipy implements more specialized routines such as interpolation.

>>> from numpy import linspace, pi, sin

>>> from scipy import interpolate

Comment. We previously used the sin function available in the math Python standard library. The numpy library
offers its own sin function with additional features. For instance, try sin([1,2]). This evaluates sin(z) at
both £ =1 and = =2. On the other hand, this results in an error with the sin function not from numpy.

Let us interpolate f(z) = sin(z) using 3 points, namely zg =0, 21 = =, 2o = 7. We begin by

21
making lists of the x and y values as follows:
>>> xpoints = [0, pi/2, pil
>>> ypoints = [sin(x) for x in xpoints]

Comment. As pointed out in the previous comment, we can even simply use ypoints = sin(xpoints). (The
result would be a numpy array instead of a standard list but, for basic purposes, these behave alike. The numpy
library introduces and uses arrays for additional features and performance for scientific computations.)

Let us check that xpoints and ypoints hold the expected values:
>>> xpoints
[0, 1.5707963267948966, 3.141592653589793]
>>> ypoints
[0.0, 1.0, 1.2246467991473532¢-16]
We now ask scipy to create the interpolating polynomial:
>>> poly = interpolate.lagrange(xpoints, ypoints)

The resulting polynomial can be evaluated at any other point (such as © = 7 /4) and we can
access its coefficients (which tell us that the polynomial is approximately —0.4122% + 1.27x):

>>> poly(pi/4)
0.75
>>> sin(pi/4)
0.7071067811865475
>>> poly.coeffs
[-0.40528473456935116, 1.2732395447351628, 0.0]
2

. . L. 4 4
Homework. Show that the exact interpolation polynomial is —T — —x”.

Finally, let us plot the sine function together with the polynomial interpolation. In the code below
we use matplotlib, a powerful and widely used plotting library.

>>> import matplotlib.pyplot as plt
>>> xplot = linspace(0, pi, 100)
>>> plt.plot(xpoints, ypoints, ’o’, xplot, sin(xplot), ’-’, xplot, poly(xplot), ’:7)

>>> plt.show()

Armin Straub 53
straub@southalabama.edu

Comment. Note that we are making three plots in one line here (namely, we plot the three points, we plot sine,
and we plot the polynomial interpolation).

To plot just sine, simplify the plot command to plt.plot(xplot, sin(xplot), >-’). The ’-’ connects the
100 points (with xz-coordinates from xplot) by a line. Replace it, for instance, with >r- .’ to get a red dotted line.

https://matplotlib.org/stable/tutorials/introductory/pyplot.html

The resulting output should look as follows:

1.01 e o
0.8 1
0.6 1
0.4
0.2 1

00{ @ Y

0.0 0.5 1.0 15 2.0 2.5 3.0

This shows pretty decent interpolation on the interval [0, 7].

Which function is which?! (You can tell from the fact that we dotted one graph or from the plots below.)

On the other hand, here are the same plots on [—W 3”} and [, 27

27 2
04 S e —_
0.5 04 P ‘!,z
0.0 s L
24
—0.5
1.0
_4l
154
2.0
_64
25
-30{ : -8
-1 0 1 2 3 4 5 -2 0 2 4 6

Homework. Adjust our code above (only the line linspace(0, pi, 100) needs to be changed) to produce
these two plots.
As we can see (and as we probably expected), the polynomial interpolation does not approximate
the sine function well outside the interval [0, 7].
Comment. Given the three interpolation points 0, 7w /2, 7, an attempt to approximate the function at values

much less than 0 or much larger than 7 (that is, outside of the range of our data) is typically referred to as
extrapolation.

Armin Straub 54
straub@southalabama.edu

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

Example 90. (review) Determine the minimal polynomial interpolating (0, 1), (1,2),(2,5).

Solution. (Lagrange, review) The interpolating polynomial in Lagrange form is:

(m—l)(x—2)+2(x—0)(m—2)+5(m—0)(x—1)

P@) = 1 a no-2 TP a-ni-—2 "e-0e-1
1 5
:i(x—1)(3:—2)—2&0(3:—2)—1—5&0(3:—1)
= 2241

Solution. (Newton, divided differences)

0: 1
=
1: 2 - 2+0:1
ﬁ::&
2: 5

Accordingly, reading the coefficients from the top edge of the triangle:

p(x)=1+1(x—0)+1(xz —0)(z —1)=22+1

‘ A mean value theorem for divided differences

Review. The mean value theorem (see Theorem 55; the special case M =0 of Taylor's theorem)

states that, if f(x) is differentiable, then

fla, o) =L O =I@ _ g

for some £ between a and b.

Recall that the Newton form of the polynomial interpolating f(z) at x = xq, 1, ... is

flzo] + flzo, z1](x — w0) + flwo, 21, 2] (z — w0) (& — 1) + flwo, 21, T2, T3)(x — wo) (z — 21)(x —x2) + ...
Note that this is somewhat similar to the Taylor expansion of f(z) at x =z, which is
F (o) + f'(20)(w = w0) + gp ' (w0) (% — w0)* + g " (w0) (& — 20)* + ...

Indeed, if all the =; are equal to x¢ (this is technically not allowed when interpolating, but you can still think of
choosing them all close to z(), then the Newton form would turn into a Taylor polynomial.

In that case, f[zo,z1, ..., x| would become %f(”)(xo).

With that (as well as the mean value theorem and Taylor's theorem (see Theorem 54)) in mind,

the next result does not come as a surprise.

Armin Straub
straub@southalabama.edu

Theorem 91. (mean value theorem for divided differences) If f(x) is differentiable, then

(n)
flxo, z1, ..., Ty :fn—l(g)

for some & between the smallest and the largest of the z;.

Proof. Without loss of generality, we may assume that zo < x1 < --- < z,, (because divided differences do not
depend on the ordering of the points ;).

Let P(z) be the interpolation polynomial for f at xg, x1, ..., n. Then d(z) = f(xz) — P(x) has n + 1 zeros,
namely xq, Z1, ..., . The mean value theorem implies that between any two zeros of a function, there must
be a zero of its derivative (this is often referred to as Rolle's theorem). It therefore follows that d’(z) has n
zeros (between xo and x,,). Applying the same argument to d’(x), we then find that d”’(z) has n — 1 zeros.

Continuing like this, d(")(x) must have a zero £ between zg and x,. As such,
0=d™(&)= (&) - PM(&).
Recall that P(x) is a polynomial of degree n or less, and that its Newton form is
P(zx)=co+ci(z — zo) + ca(x —z0)(x —x1) + ... + cn(x — x0) (. — 1) (T — TP —1),
where ¢; = f[zo, %1, ..., zj]. Note that P(")(x) =nley, =n! flzo, z1, ..., Tn|. We therefore conclude that
0=d"(&) = F"(&) = PU(&) = F"(€) = n! flwo, 21, ., 2,

which proves the claim. O

Comment. Note that this provides us with a way to numerically approximate an nth derivative f(”)(:c). Namely,
choose n + 1 points xq, 1, ..., T, near x. Then f(”)(x) ~n!flro, X1, ..., Tn).
=r(e)

| Bounding the interpolation error

Theorem 92. (interpolation error) Suppose that f(z) is n + 1 times continuously differen-
tiable. Let P,(x) be the interpolating polynomial for f(x) at xg,x1,...,2,. Then

AR (3)

i) (x —xo)(x —21) (T — xp)

f(x) = Po(x) =

interpolation error

for some & between the smallest and the largest of the x; together with x.

Proof. Let P, 1(x) be the interpolating polynomial for f(x) at zo, x1, ..., Tn, Tn+1. We know that

Poti1(z) = Pu(x)+ flro, 1,y n+1)(@ —x0)(x —21) (2 — 2p)

Fr ()

(n+1)! (x —x0)(x — 1) (. —p)

= Pn(z)+
for some £ between the smallest and the largest of the z; together with x.
Given any fixed value ¢, choose x,,+1 =1 in this formula (so that P, 1(t) = f(t)) to conclude that

Fn (e

(n+1)! (t —x0)(t —x1)(t —xp),

f(#) = Paia(t) = Pu(t) +

which (after subtracting P, (t) from both sides) is the claimed expression for the error term (with z replaced by
t). O

Armin Straub 56
straub@southalabama.edu

Example 93. Suppose we approximate f(z)=sin(x) by the polynomial P(z) interpolating it at
x :O,%,ﬂ'. Without computing P(z), give an upper bound for the error when x:%.
[Compare with Example 89 where we computed and plotted P(x).]

Solution. By Theorem 92, the error is

@) .
sin(z) ~ P(e) =L@~ 0) (2 = T)@ —),

where £ is between 0 and 7 (provided that z is in [0, 7]). Note that f(*)(z) = —cos(x) so that | f)(£)] <1.
Hence, the error is bounded by

Isin(z) — P(z)| glMx -2 —m)|

. . iy
In particular, in the case x =7

For comparison. In this particularly simple case, we can easily calculate the exact error.

Namely, since sin(%) :% and P(%) :% (see Example 89), the actual error is |sin(g) — P(g)’ ~ 0.0428.

Below is a plot of the actual error (in blue) together with our bound (dotted).

0.25

0.20 1

0.101

0.05 1

0.00 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Homework. Following what we did in Example 89, try to reproduce this plot.
For which x in [0, 7] is our bound for the error maximal? What is the bound in that case?

Solution. Recall that our bound for the error is é|:r(x —)z —m)|.

2
™ . . o 1 T ap s .
z(z — 5)(x — 7) is maximal on [0, 7] for z = (1 :I:%>5 0.664,2.478. (Fill in the details!)
. . 1 3~
The corresponding error bound is 72\/577 ~ 0.249.

Comment. Note that this shows that our earlier error bound for x = % ~ 0.785 was close to the worst case.

That is not too much of a surprise since % sits right between 0 and g for which the error is O by construction.

. . 4 8
For comparison. The actual maximal error occurs when cos(z) — —+ —z =0. (Why?!)

The approximate solutions are x /2 0.472, 2.670 with corresponding (actual) error of 0.0560.
Make sure that you can identify both the x values and the error in the above plot.

Armin Straub 57
straub@southalabama.edu

Example 94. (homework) Suppose we approximate a function f(x) by the polynomial P(x)

interpolating it at z =—1, — 1. Suppose that we know that | f")(z)| <n for all z € [1,1].

3’ 3’
(a) Give an upper bound for the error when x = —%.
(b) Give an upper bound for the error when = =0.

(c) Give an upper bound for the error for all xz € [—1,1].

Solution. By Theorem 92, the error is

f(z) - P(x) :%(m—i— 1)(x —l—%)(m - %)(z ~1) :%@;2 - 1)(3:2 _ %)

where ¢ is between —1 and 1 (provided that = € [—1,1]). Since %|f(4)(£)| g%:%, the error is bounded by

%@2—1)(&—%)‘.
1

2 . /.2 2 1 ~
(a) If =—2, then this bound becomes | f(z) — P(x)| gg‘(x — 1)(33 —5)’ E'ﬁ 0.03009.

|f(z) = P(z)] <

. 1 1 1
(b) If =0, then this bound becomes | f(x) — P(z)] <E’(m2 — 1)(362 — 5)’ 5 5"“ 0.0185.
Comment. It is not surprising that this error bound is better than the one for x = —= since, roughly

. . . 3
speaking, there are more interpolation nodes around 0.

: — (2 2_1y_, 4 102
(c) Consider g(z) = (= —1)(3: —§>—a? 5 + . We need to compute max |g(a:)|

Since g(41) =0, the maximum value of |g(z)| must be attained at a point Where g’(x) =

We compute g'(z) = 4x3 — %x Hence ¢g/(z) =0 if x=0 or :E::tﬁ.
. 16 1 16
Since |g(0)] :§ and)g(:l:%)‘ =57 > g+ We conclude that mai(. lg(@)| =57
Thus, our error bound is max | f(z) — P(z)| < <t ma (:c —1) Ly oLl 16 0.0329.
ze[—1,1] S 6zc|- 9 6 81

1
Example 95. m We can approximate — max

6ze[—1,1]

1 1 16
2_ 2L\ _L 16
(x 1)(3: 9>‘ 5 8 0.0329 as

follows using 100 points.

>>> from numpy import linspace

>>> max([1/6*abs ((x**2-1)*(x**2-1/9)) for x in linspace(-1,1,100)])

0.0328984640831

Armin Straub 58
straub@southalabama.edu

