Notes for Lecture 17 Mon, 10/6/2025

| Newton'’s divided differences |

Next, we observe an alternative way of computing the coefficients c; in the Newton form
p(x) =co+ c1(x — zg) + co(x — x0) (. — 1) + c3(x — xo) (& — 1) (x — x2) + ... (1)

for interpolating a function f at x =zq, x1, x2,....

Example 83. Determine the first few coefficients. Below, we will use the following notation for
these coefficients: co= f[xo|, c1 = f[zo, x1], co= flxo, 1, 22], ...

Solution. For brevity, we write y; = f(x;).
!
e Using (0, %0): P(z0) =co="o
flzo]=co=1yo

!
e Using (z1,41): p(z1) =co+c1(z1—z0) =y1
_Y1—9Y0
L1 — 0
Note that the coefficient f[zg,z1] is a divided difference (the slope of the line through the two points).

flzo,z1)=c1

!
o Using (2, y2): p(x2) =co+ ci1(xz2 — zo) + ca(z2 — x0)(x2 — 1) = Y2

Y1 — Yo Y2 — Yo Y1 — Yo
VY0 =y = (P27 20) G ey _ o, @a] = flwo, 1]

(2 — xo)(r2 — 1) o To — 1 To— 1
The coefficient f[xg,z1, 3] is what we call a divided difference of order 2.

flzo, 1, 22l =co=

Definition 84. Define f[xo, x1, ..., x, to be the coefficient of =™ (the highest power of x) in
the minimal-degree polynomial interpolating f at x =xq, z1, ..., Tn.

Important. In other words, f[zo,x1, ..., 2y is the coefficient ¢, in the Newton form (1).

flzo, x1, ..., xp] is called a divided difference of order n of the function f because of the recursive relation
illustrated in the previous example, which is proven in general in the next theorem.

Note that, by definition, f[zo,z1,...,z,] does not depend on the order of the points.

Theorem 85. The divided differences f[zo,x1,...,2,] are recursively determined by f[a]= f(a)
as well as the relation

[P, b — fIP,a]
f[P7a7b]: ,b_a : )
where P is a set of points.
For instance. With P=x1,...,2, _1 and a =z, b= x,, the recursive relation becomes
_ flxt, e xn) — flzo, oo Tn—1]
flxo, ooy xn] = pra— .
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Proof. Suppose that P ={xo, ...,z } and that
po(z) =co+ci(x —x0) + ca2(x —xo)(x —x1) + ... +en(z —zo)(x — 1) (T —Tp—_1)
is the interpolating polynomial for x, ..., x,. Then

pa(®) = po(x)+ fP;a](x —xo)(z — z1)(x —zn),
po(z) = po(x) + fIP,bl(z —z0)(x — x1)-(z — 2n)

are the interpolating polynomials for xo, ..., T, a and zo, ..., Tp, b, respectively. Our goal is to determine the
interpolating polynomial for zq, ..., ,, a, b, which we can write as

Pa,b(x) = pa(z) + C(z — z0) (x — 1) (T — Tp) (T — a)

where the constant C' = f[P, a, b] is to be determined. By construction, the polynomial already interpolates
T =xg,...,Tn,a. To ensure that it also interpolates = = b, we need

Pa,b(8) = Pa(b) + C(b — 20) (b — 21)-+(b — ) (b — @) = £ (0).
Using f(b) = pp(b), we can now solve for C' to find

C= pb(b)_pa(b) :f[va]_f[Pva]
(b—x0)(b—z1)(b—zpn)(b—a) b—a ’

which is what we wanted to show. O

(Newton form using divided differences)

The Newton form of the polynomial p(x) interpolating f at =g, 21, ... is
p(x) =co+c1(x — z) + co(x — z0) (. — 1) + c3(x — xo) (x — 1) (z — x2) + ...,

where the coefficients ¢,, = f[zo, 1, ..., 2] can be computed using the triangular scheme:

fIL S - Iy ]
zo | flzo]
fleo, 2] = L= I 12l
T s}
x1 | flz] flzo, x1, 2] = f[ml’m;i:i([)movml]
f[xlvx?}zw f[mo,xl,xg,xg]:...
z2 | flza flz1, w2, 3] = flza, m;’i — igmlv 2]
f[xg, 333] _ f[m3] : f[.”l:g]
T3 xTo
z3 | flxs]

Note that the coefficients ¢,, = f[zo, z1, ..., ] needed for the Newton form appear at the top edge of the
triangle (in the shaded cells).
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Example 86. Determine the minimal polynomial interpolating the points (—3,—1),(—1,5),(0,8),
(2,-1).

Solution. (Newton, direct approach; again, for comparison) The interpolating polynomial in Newton form is
p(x)=co+ci(x+3)+ca(x+3)(x+1)+c3(x+3)(z+1)z.
We use the four points to solve for the coefficients c¢;:
(=3,—-1) : cp=—-1
(=1,5) : 2—&—201:5 == =3

-1
(0,8) : ¢co+3c14+3c2=8 = ¢2=0

—1 3
(2,—1) : cg+5c1+15¢c2+30c3=—-1 — 02:—%
—1 3 0

Hence, p(z)=—1+4+3(z+3) — %(:c +3)(z+ 1)z = —%:c“q’ —2z2 + %az +8.

Solution. (Newton, divided differences)

f[] f[:] f[’v] f[77’]
-3 -1
5-(=1) _
ey
—15 0_(_3)—0
8-5 _, —2-0
0—(—1) 2—(-3) 2
E -3 _ 5
2— (1) 2
-1-8 9
2-0 2
2| -1

Accordingly, reading the coefficients from the top edge of the triangle (as shaded above), the Newton form is
1 1 3 5, 3
p(x)=—1+3(x+3) —§(x+3)(ac+1)ac: 5 —2x +§x+8,

in agreement with what we had computed earlier.
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Example 87. Determine the minimal polynomial interpolating (0, —1), (2, 1), (3, 8).
Solution. (Lagrange) The interpolating polynomial in Lagrange form is:

_ (r—2)(x—-3) (x —0)(z—3) (z—0)(z—2)
p(z) = -1 0-2)0-3) 1 (2-02=-3) °(G-03B-2

1 1 8
= —g(a:—2)(x—3)—§a:(x—3)+§a:(a?—2):2x2—3x—1

Solution. (Newton, direct approach) The interpolating polynomial in Newton form is
p(x) =co+ci(x —0) + ca(x — 0)(z — 2).
We use the three points to solve for the coefficients c¢;:
e (0,—1):co=-1.

e (2,1): co+2c1=1,sothatc;=1.
-1

e (3,8): ¢p+3c1+3co=38, so that co =2.
-1 1

Hence, p(z) = —1+1(x —0) +2(x — 0)(z — 2) =222 — 32 — 1.

Solution. (Newton, divided differences)

0: —1
ot

2: 1 - ﬁ:z
3—:2:7

3: 8

Accordingly, reading the coefficients from the top edge of the triangle, the Newton form is

p(x)=—1+1(z —0)+2(z —0)(x —2) =222 — 3z — 1.

Example 88. (homework) Repeat the previous example with the additional point (1, —2).

Solution. (Newton, divided differences) Notice how only the shaded entries are new.

0: —1
L

o 8—1 ﬁ=2 22

3: 8 - ﬁ:z
5-3 =0

1: -2

Since the point (1, —2) is on the graph of 222 — 3z — 1, we obtained the same final polynomial. If we had added
a point not on the graph, then we would have found a degree 3 polynomial interpolating the total of four points.

Important comment. This is a considerable advantage for many practical purposes since often one does not
know a priori how many interpolation points to use. (Instead of an exact “0" for the newest coefficient, we would

typically be looking for small new coefficients before stopping.)
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