
Notes for Lecture 1 Wed, 8/23/2023

How computers represent numbers

Digital computers deal with all data in the form of plenty of bits. Each bit is either a 0 or a 1.
Comment. Quantum computers instead work with qubits (short for quantum bit), each of which is a linear
combination � 0 + � 1 of basic bits 0 and 1 , where � and � are complex numbers with j�j2+ j� j2=1.
As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit
is the special case where � and � are both 0 or 1.

For efficiency, the CPU (central processing unit) of a computer deals with several bits at once.
Current CPUs typically work with 64 bits at a time.
About 20 years ago, CPUs were typically working with 32 bits at a time instead.

Note that 64 bits can store 264= 18446744073709551616 many different values. That is a large
number but may be limited for certain applications.
For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer
cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the decimal system to express numbers. For instance:
1234=1 � 103+2 � 102+3 � 101+4 � 100:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=1 � b3+2 � b2+3 � b1+4 � b0:

In this example, b> 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.
Comment. In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To
avoid confusion, one refers to 4 as the least significant digit and 1 as the most significant digit.

Example 1. 25= 16+8+1= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20.
Accordingly, 25=(11001)2.

While the approach of the previous example works well for small examples when working by hand
(if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49=(:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 . Hence, 49=(:::10001)2 where ::: are the digits for 1.

� 1=0 � 2+ 1 . Hence, 49=(110001)2.
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Example 3. Express 49 in base 3.
Solution.

� 49= 16 � 3+ 1

� 16=5 � 3+ 1

� 5=1 � 3+ 2

� 1=0 � 3+ 1

Hence, 49=(1211)3.

Other bases.
What is 49 in base 5? 49=(144)5.
What is 49 in base 7? 49=(100)7.

Fixed-point numbers

Example 4. (warmup)

(a) Which number is represented by (11001)2?

(b) Which number is represented by (11.001)2?

(c) Express 5.25 in base 2.

(d) Express 2.625 in base 2. [Note that 2.625= 5.25/2.]

Solution.

(a) (11001)2=1+8+ 16= 25

(b) (11.001)2=21+20+2¡3= 3.125
Alternatively, (11.001)2 should be (11001)2=25 divided by 23 (because we move the �decimal� point by
three places). Indeed, (11.001)2= 25/23= 3.125.
Comment. The professional term for �decimal� point would be radix point or, in base 2, binary point (but
I have heard neither of these used much in my personal experience).

(c) Note that 5.25=22+20+2¡2. Hence 5.25=(101.01)2.

(d) Since multiplication (respectively, division) by 2 shifts the digits to the left (respectively, right), we deduce
from 5.25=(101.01)2 that 2.625=(10.101)2
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Example 5. Express 1.3 in base 2.
Solution. Suppose we want to determine 6 binary digits after the �decimal� point. Note that multiplication by
26= 64 moves these 6 digits before the �decimal� point.
26 � 1.3= 83.2 and 83.2=(1010011:���)2 (fill in the details!).
Hence, shifting the �decimal� point, we find 1.3=(1.010011���)2.

Solution. Alternatively, we can compute one digit at a time by multiplying with 2 each time:

� 1 :3 [Hence, the most significant digit is 1 with 0.3 still to be accounted for.]

� 2 � 0.3= 0 :6 [Hence, the next digit is 0 with 0.6 still to be accounted for.]

� 2 � 0.6= 1 :2 [Hence, the next digit is 1 with 0.2 still to be accounted for.]

� 2 � 0.2= 0 :4 [Hence, the next digit is 0 with 0.4 still to be accounted for.]

� 2 � 0.4= 0 :8 [Hence, the next digit is 0 with 0.8 still to be accounted for.]

� 2 � 0.8= 1 :6 [Hence, the next digit is 1 with 0.6 still to be accounted for.]

� And now things repeat because we started with 0.6 before. . .

Hence, 1.3=(1.01001���)2 and the final digits 1001 will be repeated forever: 1.3=(1.0100110011001���)2

Comment. As we saw here, fractions with a finite decimal expansion (like 13/10= 1.3) do not need to have a
finite binary expansion (and typically don't).
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Notes for Lecture 2 Mon, 8/28/2023

Example 6. (review) Express 0.1 in base 2.
Solution.

� 2 � 0 :1= 0 :2

� 2 � 0.2= 0 :4

� 2 � 0.4= 0 :8

� 2 � 0.8= 1 :6

� 2 � 0.6= 1 :2 and now things repeat. . .

Hence, 0.1=(0.00011���)2 and the final digits 0011 repeat: 0.1=(0.0001100110011���)2

Example 7. Express 35/6 in base 2.
Solution. Note that 35/6=5+5/6 so that 35/6= (101:���)2 with 5/6 to be accounted for.

� 2 � 5/6= 1 +4/6

� 2 � 4/6= 1 +2/6

� 2 � 2/6= 0 +4/6 and now things repeat. . .

Hence, 35/6= (101.110���)2 and the final two digits 10 repeat: 35/6= (101.110101010���)2

Floating-point numbers (and IEEE 754)

Possibilities for binary representations of real numbers:

� fixed-point number: �x:y with x and y of a certain number of bits

�x is called the integer part, and y the fractional part.

� floating-point number: �1:x � 2y with x and y of a certain number of bits
�1:x is called the significand (or mantissa), and y the exponent.
In other words, the floating-point representation is �scientific notation in base 2�.
Important comment. In order to represent as many numbers as possible using a fixed number of bits, it is
crucial that we avoid unnecessarily having different representations for the same number. That is why the
exponent y above is chosen so that the significand starts with 1 followed by the �decimal� point. This has the
added benefit of not needing to actually store that 1 (rather it is �implied� or �hidden�).

IEEE 754 is the most widely used standard for floating-point arithmetic and specifies, most impor-
tantly, how many bits to use for significand and exponent.
1985: first version of the standard
IEEE: Institute of Electrical and Electronics Engineers
Used by many hardware FPUs (floating point units) which are part of modern CPUs.
For more details: https://en.wikipedia.org/wiki/IEEE_754

Example 8. 4.5=(100.1)2=(1.001)2 � 22 = + 1.001
binary

� 22

Next, we will see exactly how IEEE 754 would store this as bits (32 bits in the case of �single precision�).

Armin Straub
straub@southalabama.edu

4

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754


IEEE 754 offers several choices but the two most common are:

� single precision: 32 bit (1 bit for sign, 23 bit for significand, 8 bit for exponent)

� double precision: 64 bit (1 bit for sign, 52 bit for significand, 11 bit for exponent)

In each case, 1 bit is used for the sign. Also, recall that the significand is preceded by an implied bit equal to 1.

Comment. IEEE 754 also offers half precision as well as higher precisions but single and double are the most
commonly used because this is what older and current CPUs use. Moreover, the base (also called radix) can also
be 10 instead of 2.

In IEEE 754, a constant, called a bias, is added to the exponent so that all exponents are
positive (this avoids using a sign bit for the exponent). Namely, one stores x + bias where
bias=27¡ 1= 127 for single precision (bias=210¡ 1 for double precision).

Example 9. Represent 4.5 as a single precision floating-point number according to IEEE 754.
Solution. 4.5=(100.1)2=(1.001)2 � 22= + 1: 001

binary

� 22

The exponent 2 gets stored as 2+ 127= 1000,0001 .

Overall, 4.5 is stored as 0 1000,0001 0010,0000,0000,0000,0000,000 .

Example 10. Represent ¡0.1 as a single precision floating-point number according to IEEE 754.
Solution. In Example 6, we computed that 0.1=(0.0001100110011���)2.
Hence: ¡0.1= ¡ 1: 1001,1001:::

binary

� 2¡4

The exponent ¡4 gets stored as ¡4+ 127= 0111,1011 .

Overall, ¡0.1 is stored as 1 0111,1011 1001,1001,1001,::: .
Caution. Note that we are not able to store ¡0.1 exactly. Therefore we need to be careful about how to choose
the final bit to best approximate ¡0.1. According to IEEE 754, the final bit should be 1 (rather than 0 which we
would get if we simply truncated) so that ¡0.1 gets stored as 1 0111,1011 1001,1001,1001,1001,1001,101 .

Note that it certainly makes sense to round up the final 0 to 1 because it is followed by 1::: (this is similar to
us rounding up a final 0 in decimal to 1 if it is followed by 5:::).

Armin Straub
straub@southalabama.edu

5



Using Python as a basic calculator

Example 11. Python We can use Python as a basic calculator. Addition, subtraction, multi-
plication and division work as we would probably expect:

>>> 16*3+1

49

>>> 3/2

1.5

To compute powers like 264, we need to use ** (two asterisks).

>>> 2**64

18446744073709551616

Division with remainder of, say, 49 by 3 results in 49 = 16 � 3 + 1. In Python, we can use the
operators // and % to compute the result of the division as well as the remainder:

>>> 49 // 3

16

>>> 49 % 3

1

% is called the modulo operator. For instance, we say that 49 modulo 3 equals 1 (and this is often
written as 49� 1 (mod 3)).

IMPORTANT. The commands here are entered into an interactive Python interpreter (this
is indicated by the >>>). When running a Python script, we need to use print(16*3+1) or
print(3/2) to receive the first two outputs above.
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Notes for Lecture 3 Wed, 8/30/2023

Review. Possibilities for binary representations of real numbers:

� fixed-point number: �x:y with x and y of a certain number of bits

� floating-point number: �1:x � 2y with x and y of a certain number of bits
IEEE 754, single precision: 32 bit (1 bit for sign, 23 bit for significand x, 8 bit for exponent y)
IEEE 754, double precision: 64 bit (1 bit for sign, 52 bit for significand x, 11 bit for exponent y)

Example 12. Represent¡0.375 as a single precision floating-point number according to IEEE 754.
Solution. ¡0.375=¡3

8
=¡3 � 2¡3= ¡ 1: 1

binary

� 2¡2

The exponent ¡2 gets stored as ¡2+ 127= 0111,1101 . (Recall that the bias 27¡ 1= 127 is being added to
the exponents. Also, it helps to keep in mind that 127=(0111; 1111)2.)

Overall, ¡0.375 is stored as 1 0111,1101 1000,0000,::: .

Example 13. What is the largest single precision floating-point number according to IEEE 754?
Technical detail. The exponent (1111;1111)2=28¡ 1=255 is reserved for special numbers (such as infinities
or �NaN�). Hence, the largest exponent corresponds to (1111; 1110)2= 254.

Solution. The largest single precision floating-point number is

1 1111,1110 1111,1111,::: =+1.111::: � 2127� 2128=22
7� 3.4 � 1038:

Here, we used that (1111; 1110)2=28¡ 2= 254 so that the actual exponent is 254¡ 127= 127.
For comparison. The largest 32 bit (signed) integer is 231¡1�2.1 �109 (the exponent is 31=32¡1 to account
for using 1 bit to store the sign). You might find this surprisingly small. And, indeed, 32 bit is not enough to
address all memory locations in modern systems which is why the step to 64 bit was necessary.
Double precision. Likewise, the largest double precision floating-point number is

1 111; 1111,1110 1111,1111,::: =+1.111::: � 21023� 21024=22
10� 1.8 � 10308:

On the other hand, the largest 64 bit (signed) integer is 263¡ 1� 9.2 � 1018.

Example 14. (reasons for floats) Almost universally, major programming languages use floating-
point numbers for representing real numbers. Why not fixed-point numbers?
Solution. Fixed-point numbers have some serious issues for scientific computation. Most notably:

� Scaling a number typically results in a loss of precision.
For instance, dividing a number by 2r and then multiplying it with 2r loses r digits of precision (in
particular, this means that it is computationally dangerous to change units). Make sure that you see that
this does not happen for floating-point numbers.

� The range of numbers is limited.
For instance, the largest number is on the order of 2N where N is the number of bits used for the integer
part. On the other hand, a floating-point number can be of the order of 22

M¡1
where M is the number

of bits used for the exponent. (Make sure you see how enormous of a difference this is! See the previous
example for the case of double precision.)

Moreover, as noted in the box below, fixed-point numbers do not really offer anything that isn't already provided
by integers. This is the reason why most programming languages don't even offer built-in fixed-point numbers.

Fixed-point numbers are essentially like integers.

For instance, instead of 21.013 (say, seconds) we just work with 21013 (which now is in milliseconds).
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Example 15. Give an example where one should not use floats.
Solution. Most notably, one should not use floats when dealing with money. That is because, as we saw earlier,
an amount such as 0.10 dollars cannot be represented exactly using a float (when using base 2, as is the default
in most programming languages such as Python) and thus will get rounded. This is very problematic when
working with money.

Comment. For most purposes, the easiest way to avoid these issues is to store dollar amounts as cents. For the
latter we can then simply use integers and work with exact numbers (no rounding).

Example 16. Python Python automatically uses (double precision) floats when we enter num-
bers with a decimal point or as the result of divisions.

>>> 1.1

1.1

>>> 1/3

0.3333333333333333

Comment. Note how we can see (roughly) the 52 bit precision of the double precision floats (there are 16 decimal
digits after the decimal point, which translates to about 16 � log210� 53.15 binary digits; this corresponds to
about 52 bit after the first implicit 1).
IMPORTANT. As noted earlier, the commands here are entered into an interactive Python interpreter (this is
indicated by the >>>). When running a Python script, we need to use print(1.1) or print(1/3) to receive
the above outputs.

For very large (or very small) numbers, scientific notation is often used:

>>> 2.0 * 10**80

2e+80

>>> (1/2)**100

7.888609052210118e-31

The following are two things that are (somewhat) special to Python and are often handled differ-
ently in other programming languages. First, integers are not limited in size (often, integers are
limited to 64 bits, which can cause issues like overflow when one exceeds the 264 possibilities).
This is illustrated by the following (this explains why we wrote 2.0 above):

>>> 2 * 10**80

200000000000000000000000000000000000000000000000000000000000000000000000000000000

Second, Python likes to throw errors when a computation runs into an issue (there are nice ways
to �catch� these errors in a program and to react accordingly, but that is probably beyond what
we will use Python for).

>>> 1 / 0

ZeroDivisionError: division by zero

Some other programming languages would instead (silently, without error messages) return special
floats representing +1, ¡1 or NaN (not-a-number).

Example 17. To store 13 decimal digits, how many bits are needed?
Solution. There are 1013 many possibilities with 13 decimal digits. Since log2(1013)=13log2(10)�43.19, we
need 44 bits.
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Example 18. Python Let us perform the previous calculation of 13log2(10) using Python. First
of all, we need to get access to the log function because it is not available by default. Instead it
resides in a module called math:
>>> from math import log

>>> 13*log(10, 2)

43.18506523353572

It might be unexpected that the 2 is the second argument of log. If you want to learn more about
how to use a function, you can enter the function name followed by a question mark:

>>> log?

Example 19. Python Explain the following floating-point rounding issue:

>>> 0.1 + 0.1 + 0.1 == 0.3

False

>>> 0.1 + 0.1 + 0.1

0.30000000000000004

Solution. As we saw in Example 6, 0.1 cannot be stored exactly as a floating-point number (when using base
2). Instead, it gets rounded up slightly. After adding three copies of this number, the error has increased to the
point that it becomes visible as in the above output.
IMPORTANT. In the Python code above, we used the operator == (two equal signs) to compare two quantities.
Note that we cannot use = (single equal sign) because that operator is used for assignment (x = y assigns the
value of y to x, whereas x == y checks whether x and y are equal).
Comment. As the above issue shows, we should never test two floats x and y for equality. Instead, one typically
tests whether the difference jx¡ y j is less than a certain appropriate threshold. An alternative practical way is
to round the floats before comparison (below, we round to 8 decimal digits):

>>> round(0.1 + 0.1 + 0.1, 8) == round(0.3, 8)

True
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Notes for Lecture 4 Wed, 9/6/2023

Interlude: Representing negative integers

In our discussion of IEEE 754, we have seen two ways of storing signed numbers using r bits:

� sign-magnitude: One bit is used for the sign, the other bits for the absolute value.
Typically, the most significant bit is set to 0 for positive numbers and 1 for negative numbers.
This is what happens in IEEE 754 for the most significant bit.

� offset binary (or biased representation): Instead of storing the signed number n, we
store n+ b with b called the bias.
Often the bias is chosen to be b=2r¡1.
This is what happens in IEEE 754 for the exponent (however, the bias is chosen as b=2r¡1¡ 1).

(Perhaps) surprisingly, neither of these is how signed integers are most commonly stored:

� two's complement: The most significant bit is counted as ¡2r¡1 instead of as 2r¡1.
Two's complement is used by nearly all modern CPUs.
For instance, using 4 bits, the number 3 is stored as 0011, while ¡3 is stored as 1101. Similarly, 5 is
stored as 0101, while ¡5 is stored as 1011.
To negate a number n in this representation, we invert all its bits and then add 1.
As a result, adding a number to its negative produces all ones plus 1 (using r bits in the usual way, all
ones corresponds to 2r¡ 1 so that adding 1 results in 2r; which is where the name comes from).
Important. At the level of bits, addition in the two's complement representation works exactly as
addition of unsigned integers. For instance, consider the addition 0010 + 1011 = 1101: interpreted
as unsigned integers, this is 2 + 11 = 13; alternatively, interpreted as signed integers (using two's
complement), this is 2+ (¡5)=¡3. Likewise, the same is true for multiplication.
Advanced comment. Two's complement makes particular sense when we interpret it in terms of modular
arithmetic (ignore this comment if you are not familiar with this). Namely, if using r bits, all numbers
are interpreted as residues modulo 2r (recall that ¡1 and 2r¡ 1 represent the same residue; similarly,
2r¡1 and ¡2r¡1 are the same modulo 2r). Instead of representing the residues by 0;1;2; :::;2r¡1, we
then make the choice to represent them by 0; 1; 2; :::;¡3;¡2;¡1. Since we can compute with residues
as with ordinary numbers, this explains why, using two's complement, addition and multiplication work
the same as if the numbers are interpreted as unsigned (assuming that no overflow occurs).
Comment. Two's complement can also be interpreted as follows: instead of storing the signed number
n, we store n+2r, where we only use the r least significant bits (thus throwing away the bit with value
2r). Apart from this last bit (pun intended!), this is like offset binary.

There are yet further possibilities that are used in practice, most notably:

� ones' complement: A positive number n is stored as usual with the most significant bit
set to 0, while its negative ¡n is stored by inverting all bits.
For instance, using 4 bits, the number 5 is stored as 0101, while ¡5 is stored as 1010.
As a result, adding a number to its negative produces all ones (hence the name).

https://en.wikipedia.org/wiki/Signed_number_representations

Example 20. Which of the above four representations has more than one representation of 0?
Solution. In the sign-magnitude as well as in the ones' complement representation, we have a +0 and a ¡0.

Example 21. Express ¡25 in binary using the two's complement representation with 6 bits.
Solution. Since 25=(011001)2, ¡25 is represented by 100111 (invert all bits, then add 1).

Alternatively, note that ¡25=¡25+7 and 7= (111)2 to arrive at the same representation.
As another alternative, we store ¡25+26=7, resulting in the same representation.
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Another floating-point issue

Example 22. Explain the following floating-point issue about mixing large and small numbers:

>>> 10.**9 + 10.**-9

1000000000.0

>>> 10.**9 + 10.**-9 == 10.**9

True

>>> 10.**9

1000000000.0

>>> 10.**-9

1e-09

Solution. Recall that double precision floats (which is what Python currently uses) use 52 bits for the significand
which, together with the initial 1 (which is not stored), means that we are able to store numbers with 53
binary digits of precision. This translates to about 53/ log210= 15.95:::� 16 decimal digits. However, storing
109+ 10¡9 exactly requires 19 decimal digits.
[Recall that, if 253= 10r, then r= log10(253)= 53 log10(2)= 53/log210.]

Errors: absolute and relative

Suppose that the true value is x and that we approximate it with y.

� The absolute error is jy¡xj.

� The relative error is
����y¡x

x

����.
For many applications, the relative error is much more important. Note, for instance, that it does not change
if we scale both x and y (in other words, it doesn't change if we change units from, say, meters to millimeters).
Speaking of units, note that the relative error is dimensionless (it has no units even if x and y do).

Example 23. There are lots of interesting approximations of �. In each of the following cases,
determine both the absolute and the relative error.

(a) �� 22
7

(22/7� 3.14286)

(b) �� 92+ 192/224
p

(This approximation is featured in https://xkcd.com/217/.)

Solution.

(a) The absolute error is
������22
7
¡�

������� 0.0013= 1.3 � 10¡3.

The relative error is
�������� 227 ¡�

�

��������� 0.00040= 4.0 � 10¡4.

Comment. Sometimes the relative error is quoted as a �percentage error�. Here, this is 0.04%.

(b) The absolute error is
������ 92+ 192/224
q

¡�
������� 1.0 � 10¡9.

The relative error is
�������� 92+ 192/224
p

�

��������� 3.2 � 10¡10.
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Example 24. (homework) �10 is rounded to the closest integer. Determine both the absolute
and the relative error (to three significant digits).
Solution. �10� 93,648.0475
The absolute error is j93,648¡�10j � 0.0475.

The relative error is
������93,648¡�10

�10

������� 5.07 � 10¡7.

Coding in Python: binary digits of 0.1

In the next several examples, we will gradually get more professional in using Python for writing
our first serious code.

Example 25. Python Recall that, to express, say, 0.1 in binary, we compute:

� 2 � 0.1= 0 :2

� 2 � 0.2= 0 :4

� 2 � 0.4= 0 :8

� 2 � 0.8= 1 :6

� 2 � 0.6= 1 :2

� and so on.. .

The above 5 multiplications with 2 reveal 5 digits after the �decimal� point: 0.1=(0.00011���)2. (We can further
see that the last four digits repeat; but we will ignore that fact here.)

Let us use Python to do this computation for us. We will start with very basic and naive code,
and then upgrade it next time.

>>> x = 0.1 # or any value < 1

Comment. Everything after the # symbol is considered a comment. This is useful for reminding ourselves of
things related to the surrounding code. Comments are usually on a separate line but can be used as above (here,
we remind ourselves that the code that follows is not going to handle a number like 2.1 correctly).

To have Python do the above computation for us, we plan to multiply x by 2 (call the result x
again), collect a digit (we get that digit as the integer part of x), then subtract that digit from x
and repeat. Python has a function called trunc which �truncates� a float to its integer part but
we need to import it from a package called math to make it available.

>>> from math import trunc

Advanced comment. We can also use * in place of trunc to import all the functions from the math package.
However, it is good practice to be explicit about what we need from a package. Note that the function trunc is
very close to the function floor (which computes bxc, the floor of x, which is the closest integer when rounding
down) which also seems appropriate here; however, floor returns a float rather than an integer, and we prefer
the latter. Also note that we could use int (this is a general function that converts an input to an integer)
instead of trunc. We chose trunc because it is more explicitly what we want, and because it gives us a chance
to see how to import functions from a package.

We are now ready to compute the first digit:

>>> x = 2*x
digit = trunc(x)
print(digit)
x = x-digit

0
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By copying-and-pasting these four lines four more times, we can produce the next four digits:

>>> x = 2*x
digit = trunc(x)
print(digit)
x = x-digit
x = 2*x
digit = trunc(x)
print(digit)
x = x-digit
x = 2*x
digit = trunc(x)
print(digit)
x = x-digit
x = 2*x
digit = trunc(x)
print(digit)
x = x-digit

0
0
1
1

Clearly, we should not have to copy-and-paste repeated code like this. We will fix this issue in the
next example, as well as discuss several other important improvements.

Example 26. Python Let us return to the task of using Python to express, say, 0.1 in binary.
Last time, we copied four lines of code 5 times to produce 5 digits. Instead, to repeat something
a certain number of times, we should use a for loop. For instance:
>>> for i in range(3):

print('Hello')

Hello
Hello
Hello

Homework. Replace print('Hello') with print(i).
Important comment. The indentation in the second line serves an important purpose in Python. All lines
(after the first) that are indented by the same amount will be repeated. Test this by adding a non-indented line
containing print('Bye!') at the end.

With this in mind, we can upgrade our previous code as follows:

>>> x = 0.1 # or any value < 1
nr_digits = 5 # we want this many digits of x
from math import trunc
for i in range(nr_digits):

x = 2*x
digit = trunc(x)
print(digit)
x = x-digit

0
0
0
1
1
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Notes for Lecture 5 Mon, 9/11/2023

Example 27. Python As our next upgrade, let us collect the digits in a list instead of printing
them to the screen. Here is how we can create a list in Python and add an element to it:
>>> L = [1, 2, 3]

>>> L.append(4)

>>> print(L)

[1, 2, 3, 4]

Here is our code adjusted for using a list (and now it is more pleasant to ask for more digits):

>>> x = 0.1 # or any value < 1
nr_digits = 10 # we want this many digits of x
digits = [] # this list will store the digits of x
from math import trunc
for i in range(nr_digits):

x = 2*x
digit = trunc(x)
digits.append(digit)
x = x-digit

print(digits)

[0, 0, 0, 1, 1, 0, 0, 1, 1, 0]

Example 28. Python For our final upgrade, we collect the code into a function that we call
fracpart_digits. This is crucial for making it possible to use the code on different numbers.
>>> def fracpart_digits(x, nr_digits):

digits = []
from math import trunc
for i in range(nr_digits):

x = 2*x
digit = trunc(x)
digits.append(digit)
x = x-digit

return digits

We are now able to compute the digits of numbers by simply calling our function:
>>> fracpart_digits(0.1, 10)

[0, 0, 0, 1, 1, 0, 0, 1, 1, 0]

>>> fracpart_digits(0.2, 10)

[0, 0, 1, 1, 0, 0, 1, 1, 0, 0]

>>> from math import pi

>>> fracpart_digits(pi/4, 10)

[1, 1, 0, 0, 1, 0, 0, 1, 0, 0]

Comment. Recall that, if you are not in a Python console, you need to add print(..) to see any output.

As an advanced use of lists, here is how we could compute 5 digits of 1/n for n2f2; 3; 4; 5g:
>>> [fracpart_digits(1./n, 5) for n in range(2,6)]

[[1, 0, 0, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0]]

Comment. Note how the digits of 1/2= (0.1)2 and 1/4= (0.01)2 are particularly easy to verify.
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Example 29. One of the most famous/notorious mathematical results is Fermat's last theorem.
It states that, for n> 2, the equation xn+ yn= zn has no positive integer solutions!

Pierre de Fermat (1637) claimed in a margin of Diophantus' book Arithmetica that he had a proof
(�I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.�).

It was finally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).
This problem is often reported as the one with the largest number of unsuccessful proofs.

On the other hand, in a Simpson's episode, Homer discovered that

178212+ 184112 �=� 192212:

If you check this on an old calculator it might confirm the equation. However, the equation is not correct, though
it is �nearly�: 178212+ 184112¡ 192212�¡7.002 � 1029.
Why would that count as �nearly�? Well, the smallest of the three numbers, 178212� 1.025 � 1039, is bigger
by a factor of more than 109. So the difference is extremely small in comparison.
More precisely, if 178212+ 184112 is the true value, then approximating it with 192212 produces

� an absolute error of j178212+ 184112¡ 192212j � 7.00 � 1029 (rather large), and

� a relative error of
������178212+ 184112¡ 192212

178212+ 184112

������� 2.76 � 10¡10 (very small).

Comment. We can immediately see that Homer is not quite correct by looking at whether each term is even or
odd. Do you see it?
http://www.bbc.com/news/magazine-24724635

Example 30. Strangely, e�¡�=19.999099979:::. Determine both the absolute and the relative
error when approximating this number by 20.
https://xkcd.com/217/

Solution. The absolute error is j20¡ (e�¡�)j � 9.0 � 10¡4.

The relative error is
������20¡ (e�¡�)

e�¡�

������� 4.5 � 10¡5.

Solving equations

Now that we have discussed how computers deal with numbers, it is natural to think about how
to compute numbers of interest. Often, these arise as solutions of equations.

For instance. As simple but instructive instances, how do we compute numbers like 2
p

, log(3) or �?

Note that any equation can be put into the form f(x)=0 where f(x) is some function. Solving
that equation is equivalent to finding roots of that function.

There are many approaches to root finding see, for instance:
https://en.wikipedia.org/wiki/Root-finding_algorithms

Comment. The solve routines implemented in professional libraries often use hybrid versions of the methods we
discuss below (as well as others). For instance, Brent's method (used, for instance, in MATLAB, PARI/GP, R
or SciPy) is a hybrid of three: the bisection and secant methods as well as inverse quadratic interpolation.
Comment. It depends very much on f(x) which approach to root finding is best. For instance, is f(x) a nice
(i.e. differentiable) function? Is it costly to evaluate f(x)? This is the reason for why there are many different
approaches to finding roots and why it is important to understand their strenghts and weaknesses.
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The bisection method

Suppose that we wish to find a root of the continuous function f(x) in the interval [a; b].
If f(a)< 0 and f(b)> 0, then the intermediate value theorem tells us that there must be an
r 2 [a; b] such that f(r)=0. (Likewise if f(a)> 0 and f(b)< 0.)
Comment. Recall that the intermediate value theorem requires f(x) to be continuous so that there are no jumps
or singularities.

The bisection method now cuts the interval [a; b] into two halves by computing the midpoint
c= a+ b

2
. Depending on whether f(c)6 0 or f(c)> 0, we conclude that there must be a root in

[a; c] or in [c; a]. In either case, we have cut the length of the interval of uncertainty in half.

This process is then repeated until we have a sufficiently small interval that is guaranteed to
contain a root of f(x).

Example 31. Determine an approximation for 23
p

by applying the bisection method to the
function f(x)=x3¡ 2 on the interval [1; 2]. Perform 4 steps of the bisection method.

Comment. Note that it is obvious that 1< 23p < 2 so that the interval [1; 2] is a natural choice.

Solution. Note that f(1)=¡1<0 while f(2)=6>0. Hence, f(x) must indeed have a root in the interval [1;2].

� [a; b] = [1; 2] contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=
1+2

2
=
3

2
. We compute f(c)= c3¡ 2= 27

8
¡ 2= 11

8
> 0.

Hence, [a; c] =
h
1;
3

2

i
must contain a root of f(x).

� [a; b] =
h
1;
3

2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=
1+3/2

2
=
5

4
. We compute f(c)=¡ 3

64
< 0.

Hence, [c; b] =
h
5

4
;
3

2

i
must contain a root of f(x).

� [a; b] =
h
5

4
;
3

2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=

11
8
. We compute f(c)= 307

512 > 0.

Hence, [a; c] =
h
5

4
;
11
8

i
must contain a root of f(x).

� [a; b] =
h
5

4
;
11
8

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=

21
16
. We compute f(c)= 1069

4096
> 0.

Hence, [a; c] =
h
5

4
;
21
16

i
must contain a root of f(x).

After 4 steps of the bisection method, we know that 23p must lie in the interval
h
5

4
;
21
16

i
= [1.25; 1.3125].

Comment. For comparison, 23p � 1.2599. Note that our approximations are a bit more impressive if we think
in terms of binary digits. Then each step provides one additional digit of accuracy (because the length of the
interval of uncertainty is cut by half).
Comment. The above steps are on purpose written in a repetitive manner (reusing the same variable names a;
b; c with new values) to make it easier to translate the process into Python code.
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Example 32. (continued) We wish to determine an approximation for 23
p

by applying the
bisection method to the function f(x)=x3¡ 2 on the interval [1; 2].

(a) After how many iterations of bisection will the final interval have size less than 10¡6?

(b) If we approximate 23
p

using the midpoint of the final interval, how many iterations of
bisection do we need to guarantee that the (absolute) error is less than 10¡6?

Solution.

(a) At each iteration, the width of the interval is divided by 2. Hence, the width of the interval after n steps
will be exactly 2¡ 1

2n
=

1

2n
. Solving 1

2n
< 10¡6 for n, we find n > ¡log2(10¡6) = 6 log2(10) � 19.93.

Hence, we need 20 iterations.

(b) Again, the width of the interval after n steps will be exactly ` = 2¡ 1
2n

=
1

2n
. Since 23p is contained in

this interval, the absolute error of approximating it with the midpoint is at most `/2 = 1

2n+1
. Solving

1

2n+1
<10¡6 for n, we find n>¡log2(10¡6)¡1=6 log2(10)¡1�18.93. Hence, we need 19 iterations.

Comment. We didn't refer to the first part on purpose. Given the answer 20 from the first part, can you
see that the answer must be 20¡ 1= 19?

If we use bisection to compute a root of a (continuous) function f(x) on [a; b], then:

� After n iterations, the (absolute) error is less than b¡ a
2n+1

.

This assumes that we approximate the root using the midpoint of the final interval.
Important comment. This error bound is independent of f(x).

� Each additional iteration requires 1 function evaluation.
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Notes for Lecture 6 Wed, 9/13/2023

Python: Implementing the bisection method

Example 33. Recall that the bisection method cuts an interval [a;b] into two halves by computing
the midpoint c= a+ b

2
. It then chooses either [a; c] or [c; a] as the improved new interval.

Give a simple condition for when the interval [a; c] is chosen.
Solution. We choose [a; c] if f(a) and f(c) have opposite signs.
This is equivalent to f(a)f(c)< 0.
Comment. Here, and in the sequel, we will be very nonchalant about the possibility that f(c)= 0. This would
mean that we have accidentally found the actual root. This is not something that we expect to happen in most
applications (though serious code would have to consider the case where f(c) is 0 to within the precision we
are working with). Note that if f(c)= 0 then our above rule would always choose the right half of the interval
(and that would be fine).

Comment. In Python, we can therefore implement an iteration of bisection as follows:

>>> # we start with the interval [a, b]
c = (a + b) / 2
if f(a)*f(c) < 0:

b = c # pick [a, c] as the next interval
else:

a = c # pick [c, b] as the next interval

Even if you have never used/seen such an if-then-else statement before, the above code can be read almost as
an English sentence. Note how we indent things after if and after else (the else part can be omitted if we
only want to do something if a condition is true) to group the code that we want to be executed in each case.

Comment. One potential issue with using the product f(a)f(c) rather than directly comparing the signs is that,
depending on our available precision, f(a)f(c) might run into an underflow (note that f(a) and f(c) are each
getting smaller by construction) and be treated as zero. Here is a simple artificial example illustrating the issue:

>>> def f(x):
return (x-1)**99

>>> f(0.99) < 0

True

>>> f(1.01) > 0

True

>>> f(0.99) * f(1.01) < 0

False

With the representation of floats and their precision in mind, explain the above output!
When writing serious code, we therefore have to account for this and should instead compare the sign of f(a)
to the sign of f(b) (and not compute the product). We will ignore this issue in the sequel.
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Example 34. Python Let us implement the bisection method in Python (using the observation
from the previous example). As input, we use a function f , the end points a and b of an interval
guaranteed to contain a root of f , and the number of iterations that we wish to perform. The
output is the final interval.

>>> def bisection(f, a, b, nr_steps):
for i in range(nr_steps):

c = (a + b) / 2
if f(a)*f(c) < 0:

b = c
else:

a = c
return [a, b]

In order to use this function, we need to define a function f(x). For comparison with our com-
putation in Example 31, let us define f(x)=x3¡ 2. We can call it anything.

>>> def my_f(x):
return x**3 - 2

Let us verify (always check simple examples when writing code!) the definition of f(x) by com-
puting the values for x=1 and x=2.
>>> my_f(1)

-1

>>> my_f(2)

6

We are now ready to perform bisection with this function on the interval [a;b] with a=1 and b=2.
>>> bisection(my_f, 1, 2, 1)

[1, 1.5]

>>> bisection(my_f, 1, 2, 2)

[1.25, 1.5]

This matches our computation in Example 31.
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Example 35. Python Our computation in the previous example automatically ended up using
floats (we started with integer values for a and b but we end up with floats after dividing by 2
for the midpoint). To work with fractions (no rounding!) in Python, we can use the fractions
module as follows.
>>> from fractions import Fraction

>>> Fraction(1, 2) + Fraction(1, 3)

5/6

[You will probably see Fraction(5, 6) as the output rather than the above prettified version.]

Remarkably, our code can be used with fractions without changing it in any way:

>>> bisection(my_f, Fraction(1), Fraction(2), 1)

[Fraction(1, 1), Fraction(3, 2)]

>>> bisection(my_f, Fraction(1), Fraction(2), 2)

[Fraction(5, 4), Fraction(3, 2)]

Now, this perfectly matches our computation in Example 31.
Advanced comment. Unlike some other programming languages, Python does not make us specify the type
of variables. For instance, we never had to tell Python whether the variables a and b should be an integer or a
float or something else. Instead, Python is flexible (and we just used that to our advantage). This is called duck
typing (true to the idiom that if it walks like a duck and it quacks like a duck, then it must be a duck). As such,
Python allows the variables a and b to be any type for which our code (for instance, (a + b) / 2) makes sense.
[As always, these features have advantages and disadvantages. For instance, disadvantages of duck typing are
speed and safety (as in making problematic kinds of bugs more likely).]

Finally, let us compute all 4 iterations of Example 31 at once:

>>> [bisection(my_f, Fraction(1), Fraction(2), n) for n in range(1,5)]

[[Fraction(1, 1), Fraction(3, 2)], [Fraction(5, 4), Fraction(3, 2)], [Fraction(5, 4),
Fraction(11, 8)], [Fraction(5, 4), Fraction(21, 16)]]

Example 36. Python Note that our bisection method code in Example 34 evaluates the function
f twice per iteration (because we compute f(a) and f(c)). Rewrite our code to only require one
evaluation of f per iteration.
Solution.
>>> def bisection(f, a, b, nr_steps):

fa = f(a)
for i in range(nr_steps):

c = (a + b) / 2
fc = f(c)
if fa*fc < 0:

b = c
else:

a = c
fa = fc

return [a, b]

Try it! In terms of output, it should behave exactly as our previous code.
So why is this an improvement? (At first glance, it just looks more complicated...) Well, we need to keep in mind
that the function f could potentially be very costly to evaluate (f doesn't have to be a simple function as it was
in Example 31; instead, the definition of f might be a long computer program in itself and might require things
like querying databases in a complicated way). In such a case, this small detail might make a huge difference.
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The regula falsi method

As before, we wish to find a root of the continuous function f(x) in the interval [a; b].
The regula falsi method proceeds like the bisection method.

However, as an attempt to improve our approximations, instead of using the midpoint a+ b

2
of the

interval [a; b], it uses the root of the secant line of f(x) through (a; f(a)) and (b; f(b)).
Comment. Note that the root of the secant line will be a good approximation of the root of f(x) if f(x) is
nearly linear on the interval.

Example 37. Derive a formula for the root of the line through (a; f(a)) and (b; f(b)).
Solution. The line has slope m=

f(b)¡ f(a)

b¡ a .

Since it passes through (a; f(a)), the line has the equation y ¡ f(a) =m(x ¡ a). (We could, of course, also
pick the other point and the final result will be the same.)
To find its root (or x-intercept), we set y=0 and solve for x.

We find that the root is x= a¡ f(a)

m
= a¡ (b¡ a)f(a)

f(b)¡ f(a)
=
a(f(b)¡ f(a))

f(b)¡ f(a)
¡ (b¡ a)f(a)

f(b)¡ f(a)
=
af(b)¡ bf(a)
f(b)¡ f(a)

.

Comment. Note that the final formula af(b)¡ bf(a)
f(b)¡ f(a)

for the root is symmetric in a and b. (As it must be!)

Historical comment. Regula falsi (also called false position method) derives its somewhat strange name from its
long history where the above formula (in a time where formulas in the modern sense were not yet a thing) was used
to solve linear equations f(x)=Ax+B=0 (where A and B typically wouldn't be known explicitly) by choosing
two convenient values x= a and x= b (these would be the false positions since they are not the root itself).
https://en.wikipedia.org/wiki/Regula_falsi

To cut each interval [a; b] into the two parts [a; c] and [c; b]:

� Bisection uses the midpoint c= a+ b

2
.

� Regula falsi uses c= af(b)¡ bf(a)
f(b)¡ f(a)

.

Example 38. Determine an approximation for 23
p

by applying the regula falsi method to the
function f(x)=x3¡ 2 on the interval [1; 2]. Perform 3 steps.
Solution. Note that f(1)=¡1<0 while f(2)=6>0. Hence, f(x) must indeed have a root in the interval [1;2].

� [a; b] = [1; 2] contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=
8

7
. We compute f(c)=¡174

343
< 0.

Hence, [c; b] =
h
8

7
; 2

i
must contain a root of f(x).

� [a; b] =
h
8

7
; 2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=

75
62
. We compute f(c)=¡ 54781

238,328
< 0.

Hence, [c; b] =
h
75
62
; 2

i
must contain a root of f(x).

� [a; b] =
h
75
62
; 2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The regula falsi point is c= af(b)¡ bf(a)

f(b)¡ f(a)
=

37,538
30,301

. We compute f(c)< 0.

Hence, [c; b] =
h
37,538
30,301 ; 2

i
must contain a root of f(x).

After 3 steps of the regula falsi method, we know that 23p must lie in
h
37,538
30,301

; 2
i
� [1.2388; 2].

Comment. For comparison, 23p � 1.2599.
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Example 39. Python We can easily adjust our code from Example 34 for the bisection method
to handle the regula falsi method. We only need to change the line that previously computed the

midpoint c= a+ b

2
and replace it with c= af(b)¡ bf(a)

f(b)¡ f(a)
instead:

>>> def regulafalsi(f, a, b, nr_steps):
for i in range(nr_steps):

c = (a*f(b) - b*f(a)) / (f(b) - f(a))
if f(a)*f(c) < 0:

b = c
else:

a = c
return [a, b]

Comment. This code is using 6 function evaluations per iteration. As we did in the case of the bisection method,
rewrite the code to only use a single function evaluation per iteration.

Let us use this code to automatically perform the computations we did in Example 38. Again, we
use fractions to get exact values for easier comparison.

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 1)

[Fraction(8, 7), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 2)

[Fraction(75, 62), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 3)

[Fraction(37538, 30301), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 4)

[Fraction(1534043307, 1226096954), Fraction(2, 1)]

>>> regulafalsi(my_f, Fraction(1), Fraction(2), 5)

[Fraction(15236748520786296242, 12128315482217382469), Fraction(2, 1)]

No wonder that we stopped after 3 iterations by hand. . .
Important comment. The final two outputs give us an indication why performance-critical scientific computa-
tions are usually done using floats even if all involved quantities could be exactly represented as rational numbers.
Compute the next iteration! The numerator and denominator integers can no longer be stored as 64 bit integers.
And this after a measly 6 iterations of a simple algorithm!
This is a typical problem with any exact expressions. In practice, their complexity (the number of bits required
to store them) often grows too fast.
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Notes for Lecture 7 Mon, 9/18/2023

Example 40. In Example 38, which we continued in the previous example, only the left point
ever got updated. Will that always be the case? Explain!
Solution. For f(x)=x3¡ 2, we have f 0(x)= 3x2 and f 00(x)= 6x.
Therefore we have f 0(x)> 0 as well as f 00(x)> 0 for all x2 [1; 2]. This means that our function is increasing
as well as concave up (on the interval [1; 2]).
Because it is concave up, its graph will always lie below the secant lines we construct (see below).
Combined with the function being increasing, the regula falsi points (roots of the secant lines) will always be to
the left of the true root (here 23p ).
Accordingly, the right endpoint will never get updated.
Review of concavity. Recall that a function f(x) is concave up (like any part of a parabola opening upward)
at x= c if f 00(c)> 0. At such a point, the graph of the function lies above the tangent line (at least locally).
Make a sketch! On the other hand, this means that for sufficiently small intervals [a; b] around c, the graph will
lie below the secant line through (a; f(a)) and (b; f(b)).

Let us note the following differences between bisection and regula falsi:

� The intervals produced by bisection shrink by a factor of 1/2 per iteration. On the other
hand, the intervals produced by regula falsi usually don't drop below a certain length.
For instance. This is illustrated by Example 38. In that case, the generated intervals are all of the form
[a; 2] where the left side a approaches 23p from below. In particular, these intervals will always have
length larger than 2¡ 23p � 0.74.

� Despite this, the sequence cn of �new� interval endpoints produced by regula falsi can be
shown to always converge to a root. Often the approximations cn converge faster than the
approximations obtained through bisection, but it can also be the other way around.

Comment. There are, however, variations of regula falsi that are more reliably faster than bisection.

� Bisection is guaranteed to converge to a root at a certain rate (namely, one bit per
iteration). Regula falsi frequently but not always converges faster, but we cannot guarantee
a certain rate (this depends on the involved function f(x)).

Example 41. Suppose we use bisection or regula falsi to compute a root of some function. Several
iterations result in the intervals [a1; b1]; [a2; b2]; :::; [an; bn]. Based on these intervals, what is our
approximation of the root?

(a) In the case of bisection.

(b) In the case of regula falsi.

Solution.

(a) In the case of bisection, the generically best choice for our approximation is the midpoint of the final
interval (an+ bn)/2.

(b) In the case of regula falsi, our approximation is the �new� endpoint of the final interval. More precisely,
the approximation is an if bn= bn¡1 and it is bn if an= an¡1.

Armin Straub
straub@southalabama.edu

23



Secant method

The secant method for computing a root of a function f(x) is a modification of regula falsi
where we do not try to bracket the root (in other words, we do not produce intervals that are
guaranteed to contain the root).

Instead, starting with two initial approximations x0 and x1, we construct x2; x3; ::: by the rule

xn+1=
xn¡1f(xn)¡xnf(xn¡1)

f(xn)¡ f(xn¡1)
:

Comment. In other words, if a = xn¡1 and b = xn are the two most recent approximations, then the next
approximation is

xn+1= c=
af(b)¡ bf(a)
f(b)¡ f(a) ;

and, as in regula falsi, this is the root of the secant line through (a; f(a)) and (b; f(b)). While regula falsi next
determines whether to continue with the interval [a; c] or with [c; b], the secant method always continues with
b and c as the next pair of approximations (in particular, the root does not need to lie between b and c).
Advanced comment. The formula for xn+1 is somewhat problematic because it is prone to round-off errors.
Namely, if xn converges to a root of f(x), then in both the numerator and denominator of that formula we are
subtracting numbers of almost equal value. This can result in damaging loss of precision.
Why is this not an issue for regula falsi? (Hint: What do we know about the signs of f(a) and f(b)?)

Example 42. Determine an approximation for 23
p

by applying the secant method to the function
f(x)=x3¡ 2 with initial approximations x0=1 and x1=2. Perform 3 steps.

Solution.

� x2=
x0f(x1)¡ x1f(x0)
f(x1)¡ f(x0)

=
8

7
� 1.1429

� x3=
x1f(x2)¡ x2f(x1)
f(x2)¡ f(x1)

=
75
62
� 1.2097

� x4=
x2f(x3)¡ x3f(x2)
f(x3)¡ f(x2)

=
989,312
782,041

� 1.2650

After 3 steps of the secant method, our approximation for 23p is 989,312
782,041

� 1.2650.
Comment. For comparison, 23p � 1.2599.
Comment. Note that the interval [x2; x3] does not contain the root 23p .

Compare Example 42 to Example 38 where we used regula falsi instead (note how the first two
iterations resulted in the same approximations). In operational terms, the secant method is a
simpler version of regula falsi since we are not trying to determine an interval that is guaranteed
to contain a root.

It may therefore come as a surprise that the secant method typically converges considerably faster
than regula falsi. However, we no longer have a guarantee of convergence (and the situation in
general depends on the initial approximations as well as the function f(x)).
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Example 43. Python The following is code for performing a fixed number of iterations of the
secant method. Note that the code is a simplified version of our code in Example 39 for the regula
falsi method.
>>> def secant_method(f, a, b, nr_steps):

for i in range(nr_steps):
c = (a*f(b) - b*f(a)) / (f(b) - f(a))
a = b
b = c

return b

Comment. This time, we return only a single value which is an approximation to the desired root. (Recall that
the secant method does not provide intervals containing the true root.)

As before, let us use this code to automatically perform the computations from Example 42.

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> [secant_method(my_f, Fraction(1), Fraction(2), n) for n in range(1,4)]

[Fraction(8, 7), Fraction(75, 62), Fraction(989312, 782041)]

Newton's method

The Newton method proceeds as the secant method, except that it uses tangents instead of
secants. In particular, instead of two previous points xn¡1; xn (so that we construct a secant line)
we only require a single point xn to compute the next point.

Example 44. Derive a formula for the root of the tangent line through (a; f(a)).
Solution. The line has slope m= f 0(a). (We could also pick the other point.)
Since it passes through (a; f(a)), the line has the equation y¡ f(a)=m(x¡ a).
To find its root (or x-intercept), we set y=0 and solve for x.

We find that the root is x= a¡ f(a)

m
= a¡ f(a)

f 0(a)
.

Comment. Compare the above derivation with what we did for the regula falsi method.

Thus, given an initial approximation x0, the Newton method constructs x1; x2; ::: by the rule

xn+1=xn¡
f(xn)
f 0(xn)

:

Comment. In contrast to the secant method, the Newton method requires us to be able to compute f 0(x).
Also, per iteration we need two function evaluations (one for f and one for f 0) whereas the secant method only
requires a single function evaluation.

Comment. If we use the approximation f 0(xn)� f(xn)¡ f(xn¡1)

xn¡xn¡1
(which is a good approximation if xn¡1 and

xn are sufficiently close) in the Newton method, then we actually obtain the secant method.
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Example 45. Determine an approximation for 23
p

by applying Newton's method to the function
f(x)=x3¡ 2 with initial approximation x0=1. Perform 3 steps.
Solution. We compute that f 0(x)= 3x2.

� x1=x0¡
f(x0)
f 0(x0)

=
4
3
� 1.3333

� x2=x1¡
f(x1)
f 0(x1)

=
91
72
� 1.2639

� x3=x2¡
f(x2)
f 0(x2)

=
1,126,819
894,348

� 1.2599

After 3 steps of Newton's method, our approximation for 23p is 1,126,819
894,348

� 1.259933.

Comment. For comparison, 23p � 1.259921. The error is only 0.000012!
After one more iteration, the error drops to an astonishing 1.2 � 10¡10.
After one more iteration, the error drops to an astonishing 1.2 � 10¡20.
It looks like the number of correct digits is doubling at each step!!
We will soon prove that this is indeed the case.

Example 46. Python The following code implements the Newton method. Note that we need
as input both a function f and its derivative fd:
>>> def newton_method(f, fd, x0, nr_steps):

for i in range(nr_steps):
x0 = x0 - f(x0)/fd(x0)

return x0

Let us use this code to automatically perform the computations from Example 45.
>>> def f(x):

return x**3 - 2

>>> def fd(x):
return 3*x**2

>>> [newton_method(f, fd, 1, n) for n in range(1,5)]

[1.3333333333333333, 1.2638888888888888, 1.259933493449977, 1.2599210500177698]

Next, let us compare these values to 23
p

, the actual root of f(x).
>>> [newton_method(f, fd, 1, n) - 2**(1/3) for n in range(1,6)]

[0.07341228343846007, 0.003967838994015649, 1.24435551038804e-05,
1.2289658180009155e-10, 0.0]

It really looks like the number of correct digits is doubling at each step! Can you explain what
happened for the last output for which we got 0.0?
Well, we expect about 20 correct decimal digits (translating to about 20 � log210� 66.4 binary digits). That is
more than the number of significant digits that can be stored in a double-precision float. Accordingly, the error
is going to be rounded down to 0.

Finally, for comparison with Example 45, here are the first few exact values:
>>> from fractions import Fraction

>>> [newton_method(f, fd, Fraction(1), n) for n in range(1,4)]

[Fraction(4, 3), Fraction(91, 72), Fraction(1126819, 894348)]
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Notes for Lecture 8 Wed, 9/20/2023

Example 47. Apply Newton's method to g(x)=x3¡ 2x+2 and initial value x0=0.

Solution. Using g 0(x)= 3x2¡ 2, we compute that x1= x0¡ g(x0)

g 0(x0)
=1, x2=x1¡ g(x1)

g 0(x1)
=1¡ 1

1
=0.

Since x2=x0, the Newton method will now repeat and we are stuck in a 2-cycle.
In particular, the Newton method does not converge in this case.
Comment. g(x) has one real root at x�¡1.7693 (as well as two complex roots). Make a plot of g(x)!
Comment. It is possible to run into n-cycles for larger n as well when doing Newton iterations (for instance,
try f(x) = x5¡ x ¡ 1 and initial value x0= 0). When computing numerically, it is not particularly likely that
we will run into a perfect cycle. However, such cycles can be attractive. Meaning that we get closer and closer
to the cycle if we start with a nearby point. This is illustrated by the Python code experiment below.

Example 48. Python We apply the Newton method from our previous example to computing

a root of g(x)=x3¡ 2x+2. For that, we define g and its derivative as functions in Python:

>>> def g(x):
return x**3 - 2*x + 2

>>> def gd(x):
return 3*x**2 - 2

The following then confirms that we indeed have a 2-cycle starting with 0:
>>> [newton_method(g, gd, 0, n) for n in range(8)]

[0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]

On the other hand, this is what happens if we start with a point close to 0:
>>> [newton_method(g, gd, 0.1, n) for n in range(8)]

[0.1, 1.0142131979695432, 0.07965576631987636, 1.0090987403727651, 0.05222652653371296,
1.0039651847274838, 0.02332943565497303, 1.0008043531824031]

Notice how we are being attracted by the 2-cycle.

Review: Taylor series

Recall from Calculus that, if f(x) is analytic at x= c, then

f(x) =
X
n=0

1
f (n)(c)
n!

(x¡ c)n= f(c)+ f 0(c)(x¡ c)+ 1
2
f 00(c)(x¡ c)2+ :::

The series on the right-hand side is called the Taylor series of f(x) at x= c.
Advanced comment. We only get the equality between f(x) and its Taylor series for functions that are analytic
at x= c (by definition, these are functions than can be expanded as a power series; the above makes it explicit
what the coefficients of that power series have to be). Fortunately, all elementary functions (the ones we can
express as algebraic expressions with exponentials, logarithms and trig functions) are analytic at almost all points.

On the other hand, for instance, the Taylor series for the function f(x) = e¡1/x
2
at x= 0 is zero (because all

derivatives of f(x) are zero for x=0) while f(x) is not zero (however, note that x=0 is clearly a problematic
point of the formula for f(x); that function is analytic at all other points). Since f(x) is infinitely differentiable,
this illustrates that being analytic is a stronger property than being infinitely differentiable. For other functions,
it is possible that the Taylor series might not converge at all.
Comment. The Taylor series of f(x) at x=0 takes the form f(0)+ f 0(0)x+

1

2
f 00(0)x2+ :::. In practice, we

can often shift things so that the Taylor series of interest are around x=0.
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Example 49. Determine the Taylor series of ex at 0.
Solution. If f(x)= ex, then f (n)(x)= ex. In particular, we have f (n)(0)= 1 for all n.

Consequently, we have ex=
X
n=0

1
xn

n!
= 1+ x+

1

2
x2+

1

6
x3+ :::

Comment. ex is analytic everywhere and so it equals its Taylor series.

Example 50. Spell out the first few terms of the Taylor series of xe2x at 0.
Solution. Since ex=1+x+ 1

2
x2+

1

6
x3+ :::, we have xe2x=x

�
1+2x+

1

2
22x2+

1

6
23x3+ :::

�
which simplifies

to xe2x= x+2x2+2x3+
4

3
x4+ :::.

Alternatively. We could set f(x)= xe2x and compute f (n)(0) for n=0; 1; 2; ::: to get our hands on the first
few terms of the Taylor series.

Example 51. Determine the Taylor series of lnx at x=1.
Solution. If f(x)= ln(x), then f 0(x)= 1

x
, f 00(x)=¡ 1

x2
, f 000(x)= 2

1

x3
, f (4)(x)= 2 � 3 1

x4
, . . .

For n> 1, we thus have f (n)(x)= (¡1)n+1(n¡ 1)!
xn

and, in particular, f
(n)(1)

n!
=(¡1)n+1(n¡ 1)!

n!
=
(¡1)n+1

n
.

Consequently, we have lnx=
X
n=1

1
(¡1)n+1

n
(x¡ 1)n.

Comment. By replacing x with 1¡ x, we obtain
X
n=1

1
xn

n
=¡ln(1¡x)= ln

�
1

1¡x

�
.

If we take the derivative of both sides, we further find
X
n=0

1
xn=

1

1¡x . This is the famous geometric series.

The truncation
X
n=0

M
f (n)(c)
n!

(x¡ c)n is called the M th Taylor polynomial of f(x) at x= c.

Comment. The Mth Taylor polynomial is a polynomial of degree at most M (note that the degree can be
smaller if f (M)(c)= 0).
Important comment. The first Taylor polynomial of f(x) at x= c is the tangent line of f(x) at x= c. In other
words, it is the best linear approximation of f(x) at x= c.
Likewise, the Mth Taylor polynomial is the best polynomial approximation at x= c of degree up to M .

We have the following fundamental result for what happens when we truncate a Taylor series.

Theorem 52. (Taylor's theorem with error term) Suppose that f(x) is M + 1 times
continuously differentiable on the interval between x and c. Then we have

f(x) =
X
n=0

M
f (n)(c)
n!

(x¡ c)n

Mth Taylor polynomial

+ f (M+1)(�)
(M +1)!

(x¡ c)M+1

error term

for some � between x and c.

The special case M =0 of Taylor's theorem is equivalent to the mean value theorem:

Theorem 53. (mean value theorem) Suppose that f(x) is differentiable on [a; b]. Then there
exists � 2 (a; b) such that

f 0(�)= f(b)¡ f(a)
b¡ a :

Proof. Make a picture! �
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Note that Taylor's theorem provides us with a representation for the error when we approximate
f(x) with a Taylor polynomial. This is illustrated in the next example.

Example 54. Suppose we use the approximation ex� 1+x+ x2

2
.

(a) Using Taylor's theorem, provide an upper bound for the error on the interval [0; 1].

(b) Using Taylor's theorem, provide an upper bound for the error on the interval [0; 0.1].

(c) Using Taylor's theorem, how many terms of the Taylor series do we need so that the error
on [0; 0.1] is less than 10¡16?

Solution. Note that 1+x+ x2

2
is the 2nd Taylor polynomial of f(x)= ex at x=0.

(a) Taylor's theorem implies that

ex¡
�
1+ x+

x2

2

�
=
f (3)(�)
3!

(x¡ 0)3= e�

3!
x3

for some � between 0 and x.

Note that je�j6 e for all � 2 [0; 1].
On the other hand, jx3j6 1 for all x2 [0; 1].
We therefore conclude that the error on the interval [0; 1] is bounded by��������ex¡�

1+ x+
x2

2

���������= ��������e�3!x3
��������6 e

3!
� 0.453:

Comment. In this simple case, we can determine the maximal error exactly (without using Taylor's
theorem). Since the function ex¡

�
1+x+

x2

2

�
is increasing on the interval [0;1], starting with the value

0, the maximal error must occur at x=1 and is e¡ 5

2
�0.218. We thus find that our earlier error bound

was a bit conservative but not a bad upper bound.

(b) As above, we conclude that the error on the interval [0; 0.1] is bounded by��������ex¡�
1+x+

x2

2

���������= ��������e�3!x3
��������6 e0.1

3!
0.13� 0.000184= 1.84 � 10¡4:

Comment. For comparison, as above, the maximal actual error is 1.71 � 10¡4.

(c) By Taylor's theorem,

jex¡ pM(x)j=
�������� e�

(M +1)!
xM+1

��������6 e0.1

(M +1)!
0.1M+1:

We wish to chooseM so that the right-hand side is less than 10¡16. Since the right-hand side decreases
very rapidly, we simply increase M until that happens:

e0.1

3!
0.13� 1.8 � 10¡4; :::;

e0.1

9!
0.19� 3.0 � 10¡15;

e0.1

10!
0.110� 3.0 � 10¡17:

We conclude that the 9th Taylor polynomial will approximate ex in such a way that the error on [0; 0.1]
is less than 10¡16.
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Notes for Lecture 9 Mon, 9/25/2023

Review. If f(x) is analytic around x= c, then it equals its Taylor series of f(x) at x= c:

f(x) =
X
n=0

1
f (n)(c)
n!

(x¡ c)n= f(c)+ f 0(c)(x¡ c)+ 1
2
f 00(c)(x¡ c)2+ :::

Fixed-point iteration

Definition 55. x� is a fixed point of a function f(x) if f(x�)=x�.

Example 56. Determine all fixed points of the function f(x)=x3.
Solution. x3=x has the three solutions x�=0;�1 (and a cubic equation cannot have more than 3 solutions).
These are the fixed points.

Idea. Suppose x� is a fixed point of a continuous function f . If xn�x�, then f(xn)� f(x�)=
x��xn. If we can guarantee that f(xn) is closer to x� than xn, then we can set

xn+1= f(xn);

with the expectation that iterating this process will bring us closer and closer to x�.
When does this converge? This process converges if jf(xn)¡x�j< jxn¡ x�j for all xn close to x�.

This condition is equivalent to
������f(xn)¡x�
xn¡ x�

������< 1.
Since x�= f(x�), we have f(xn)¡ x�

xn¡x�
=
f(xn)¡ f(x�)

xn¡ x�
� f 0(x�) provided that xn is sufficiently close to x�.

This essentially proves the following result. (See below for a full proof using the mean value theorem.)

Theorem 57. Suppose that x� is a fixed point of a continuously differentiable function f . If
jf 0(x�)j< 1, then fixed-point iteration

xn+1= f(xn); x0= initial approximation;

converges to x� locally.
In that case, we say that x� is an attracting fixed point.
Divergence. If jf 0(x�)j>1, then x� is a repelling fixed point. Our argument shows that fixed-point iteration
will not converge to x� except in the �freak� case where xn�/ x� but f(xn)=x�.

Comment. Local convergence means that we have convergence for all initial values x0 close enough to x�.

Proof. Note that

xn+1¡x� = f(xn)¡ f(x�)
= f 0(�n)(xn¡ x�)

where we applied the mean value theorem for the second equation and where �n is between xn and x�. Thus

jxn+1¡x�j= jf 0(�n)j � jxn¡ x�j

Since f 0 is continuous and jf 0(x�)j< 1, we have jf 0(x)j<� for some � < 1 for all x sufficiently close to x�. If
x0 is sufficiently to x� in that sense, then it follows that jx1¡x�j<� � jx0¡x�j. In particular, x1 is even closer
to x� and we can repeat this argument to conclude that jxn+1¡x�j<� � jxn¡x�j for all n. This implies that
jxn¡ x�j<�n � jx0¡ x�j. Since � < 1, this further implies that xn converges to x�. �
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Example 58. From a plot of cos(x), we can see that it has a unique fixed point x� in the interval
[0; 1]. Does fixed-point iteration converge locally to x�?

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 57, fixed-point iteration will therefore converge to x� locally.
Comment. We will continue this analysis in Example 66.

Example 59. Python Let us implement the fixed-point iteration of cos(x) from the previous
example in Python.

>>> from math import cos

>>> def cos_iterate(x, n):
for i in range(n):

x = cos(x)
return x

>>> [cos_iterate(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

For comparison. The actual fixed point is x�� 0.7391.

Comment. Instead of using a loop, we could also implement the above fixed-point iteration recursively in the
following way (the recursive part is that the function is calling itself).

>>> def cos_iterate_recursively(x, n):
if n > 0:

return cos_iterate_recursively(cos(x), n-1)
return x

>>> [cos_iterate_recursively(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

Sometimes recursion results in cleaner code. However the use of loops is usually more efficient.

Newton's method as a fixed-point iteration

Recall that Newton's method for finding a root of f(x) proceeds from an initial approximation
x0 and iteratively computes

xn+1=xn¡
f(xn)
f 0(xn)

:

Note that this is equivalent to fixed-point iteration of the function g(x)=x¡ f(x)

f 0(x)
.

Comment. Note that x� is a fixed point of g(x)=x¡ f(x)

f 0(x)
if and only if f(x�)

f 0(x�)
=0.

We have already proven a criterion for convergence of fixed-point iterations (Theorem 57). Our
next goal is to develop the tools to analyze the speed of that convergence.
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Example 60. (We will continue this analysis in Example 67.)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Determine whether Newton's method converges locally to 23
p

.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)=x¡ f(x)
f 0(x)

=x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 57, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.
Since g 0(x)= 2

3
¡ 4

3x3
, we get g 0(x�)= 2

3
¡ 4

3 � 2 =0. Hence Newton's method converges locally to 23p .

Important comment. Notice that g 0(x�)=0 is, in a way, the strongest sense in which jg0(x�)j< 1. We
will see shortly that g0(x�)=0 implies especially fast convergence of the type we observed in Example 45.

Example 61. (homework)

(a) What are the fixed points of g(x)= x

2
+ 1

x
?

(b) Does fixed-point iteration of g(x) converge?

(c) Find a function f(x) such that the fixed-point iteration of g(x) is equivalent to Newton's
method applied to f(x).

(d) Inspired by the previous parts, suggest a fixed-point iteration to compute square roots.

Solution.

(a) Solving x

2
+

1

x
=x, we find x2=2 and thus x=� 2

p
.

Comment. Note that g(x)= 1

2

�
x+

2

x

�
. Suppose that x< 2

p
. Then 2/x> 2

p
.

When iterating g(x), we are averaging the underestimate and the overestimate, and it is reasonable to
expect that the result is a better approximation.

(b) Since g 0(x)= 1

2
¡ 1

x2
, we have g0(� 2

p
)=

1

2
¡ 1

2
=0. Hence, both fixed points are attracting fixed points.

By Theorem 57, fixed-point iteration of g(x) converges locally to both fixed points.

(c) We are looking for a function f(x) such that x¡ f(x)

f 0(x)
= g(x). Equivalently, f

0(x)

f(x)
=

1

x¡ g(x)
=

2x

x2¡ 2 .

This is a first-order differential equation which we can solve for f(x) using separation of variables or by
realizing that it is a linear DE. (Our approach below is equivalent to separation of variables.)

Note that f
0(x)

f(x)
=

d

dx
ln(f(x)). Thus, integrating both sides of the DE,

ln(f(x)) =

Z
1

x¡ g(x)dx=
Z

2x

x2¡ 2dx= lnjx2¡ 2j+C:

We conclude that fixed-point iteration of g(x) is equivalent to Newton's method applied to f(x)=x2¡2.
Comment. The general solution of the DE has one degree of freedom (the C above, which we chose as
0). On the other hand, we know from the beginning that Newton's method applied to f(x) and Df(x)
results in the same fixed-point iteration.

(d) Newton's method applied to f(x)=x2¡ a is equivalent to fixed-point iteration of g(x)= 1

2

¡
x+

a

x

�
.

Comment. The resulting method for computing square roots a
p

is known as the Babylonian method.

It consists of starting with an approximation x0� a
p

and then iteratively computing xn+1=
1

2

�
xn+

a

xn

�
.

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
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Order of convergence

Example 62. Suppose that xn converges to x� in such a way that the number of correct digits
doubles from one term to the next. What does that mean in terms of the error en= jxn¡x�j?
Comment. This is roughly what we observed numerically for the Newton method in Example 45.

Comment. It doesn't matter which base we are using because the number of digits in one base is a fixed constant
multiple of the number of digits in another base. Make sure that this clear! (If unsure, how does the number of
digits of an integer x in base 2 relate to the number of digits of x in base 10?)

Solution. Recall that the number of correct digits in base b is about ¡logb(en).
Doubling these from one term to the next means that ¡logb(en+1)�¡2logb(en).
Equivalently, logb(en+1)¡ 2logb(en)= logb

�
en+1

en
2

�
� 0.

This in turn is equivalent to en+1

en
2 � 1.

What if the number of correct digits triples? By the above arguments, we would have en+1

en
3 � 1.

Of course, there is nothing special about 2 or 3.

Example 63. Suppose that xn converges to x�. Let en = jxn ¡ x�j be the error and dn =
¡logb(en) be the number of correct digits (in base b). If dn+1=Adn+B, what does that mean
in terms of the error en?

Solution. ¡logb(en+1)=¡A logb(en)+B is equivalent to logb(en+1)¡A logb(en)= logb
�
en+1

en
A

�
=¡B.

This in turn is equivalent to en+1

en
A = b¡B.

This motivates the following definition.

Definition 64. Suppose that xn converges to x�. Let en= jxn¡x�j. We say that xn converges
to x of order q and rate r if

lim
n!1

en+1
en
q = r:

Order 1. Convergence of order 1 is called linear convergence. As in the previous example, the rate r provides
information on the number of additional correct digits per term.
Order 2. Convergence of order 2 is also called quadratic convergence. As we saw above, it means that number
of correct binary digits dn roughly doubles from one term to the next. More precisely, dn+1� 2dn+B where
the rate r=2¡B tells us that B=¡log2(r). [Note that r has the advantage of being independent of the base
in which we measure the number of correct digits.]

Order of convergence of fixed-point iteration

Theorem 65. Suppose that x� is a fixed point of a sufficiently differentiable function f . Suppose
that jf 0(x�)j< 1 so that, by Theorem 57, fixed-point iteration of f(x) converges to x� locally.

Then the convergence is of orderM with rate 1

M !
jf (M)(x�)j whereM >1 is the smallest integer

so that f (M)(x�)=/ 0.
In particular.

� If f 0(x�)=/ 0, then the convergence is linear with rate jf 0(x�)j.

� If f 0(x�)= 0 and f 00(x�)=/ 0, then the convergence is quadratic with rate 1

2
jf 00(x�)j.
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Comment. Here, sufficiently differentiable means that f needs to beM times continuously differentiable so that
we can apply Taylor's theorem.

Proof. By Taylor's theorem (Theorem 52), if f 0(x�)= f 00(x�)= ���= f (M¡1)(x�)= 0 for some M > 1, then

f(x)= f(x�)+
1
M !

f (M)(�)(x¡ x�)M

for some � between x and x�. We use this with x replaced by xn to conclude that

xn+1¡ x�= f(xn)¡ f(x�)=
1
M !

f (M)(�n)(xn¡ x�)M

for some �n between xn and x�.
Thus

xn+1¡x�
(xn¡ x�)M

=
1
M !

f (M)(�n) ¡!
n!1

1
M !

f (M)(x�);

where the limit follows from the continuity of f (M)(x) (and convergence of xn!x�). �

Example 66. (cont'd) From a plot of cos(x), we can see that it has a unique fixed point in the
interval [0;1]. Does fixed-point iteration converge locally? If so, determine the order and the rate.

This is a continuation of Example 58.

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 57, fixed-point iteration will therefore converge to x� locally.
Since x�� 0.7391, we have jf 0(x�)j � jsin(0.7391)j � 0.6736.
Because f 0(x�)=/ 0, we conclude that the order of convergence is 1 and the rate is 0.6736.
Comment. A rate of 0.5 would mean that the number of correct digits increases by 1 for each iteration (and
this is what the bisection method provides). Here, convergence is slightly slower.

Example 67. (cont'd)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Does Newton's method converge locally to 23
p

? If so, determine the order and the rate.

This is a continuation of Example 60. (Also see Example 70 for a an alternative computation for the second part.)

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)=x¡ f(x)
f 0(x)

=x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 57, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.

We compute that g 0(x)= 2

3
¡ 4

3x3
so that g0(x�)= 2

3
¡ 4

3 � 2 =0.

At this point, we know that Newton's method converges locally to 23p .

Moreover, g 00(x)= 4

x4
so that g00(x�)= 4

24/3
=22/3� 1.5874.

Hence, the order of convergence is 2 and the rate is 1
2
jg00(x�)j= 1

2
� 22/3=2¡1/3� 0.7937.

Comment. Since the rate is less than 1, the convergence is actually slightly better than a doubling of
correct digits for each iteration.
Important. We will see shortly that it is typical for Newton's method to have convergence of order 2.
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Notes for Lecture 10 Wed, 9/27/2023

Applying fixed-point iteration directly

Note that any equation f(x)=0 can be rewritten in many ways as a fixed-point equation g(x)=x.
For instance. We can always rewrite f(x)= 0 as f(x)+ x=x (i.e. choose g(x)= f(x)+x).

We can then attempt to find a root x� of f(x) by fixed-point iteration on g(x).
In other words, we start with a value x0 (an initial approximation) and then compute x1;x2; ::: via xn+1= g(xn).

Theorem 65 tells us whether that such a fixed-point iteration on g(x) will locally converge to x�.
Moreover, it tells us the order of convergence.

Example 68. Suppose we are interested in computing the roots of x2¡x¡ 1=0.
The roots are the golden ratio �= 1

2
(1+ 5

p
)� 1.618 and  = 1

2
(1¡ 5

p
)�¡0.618.

There are many ways to rewrite this equation as a fixed-point equation g(x) = x. The following
are three possibilities:

(a) Rewrite as x=x2¡ 1, so that g(x)=x2¡ 1.

(b) Rewrite first as x2=x+1 and then as x=1+ 1

x
, so that g(x)= 1+ 1

x
.

(c) Rewrite first as x2¡x
=x(x¡1)

=1 and then as x= 1

x¡ 1 , so that g(x)= 1

x¡ 1 .

In each of these three cases and for each root, decide whether fixed-point iteration converges. If
it does, determine the order and rate of convergence.
Solution.

(a) In this case, we have g(x)=x2¡ 1 and g0(x)= 2x.
Since jg 0(�)j � 3.236> 1 as well as jg0( )j � 1.236> 1, fixed-point iteration does not converge locally
to either root.

(b) In this case, we have g(x)= 1+
1

x
and g 0(x)=¡ 1

x2
.

Since jg0(�)j= 1

�+1
�0.382<1 and jg 0( )j= �+1�2.618>1, fixed-point iteration converges locally

to � but does not converge locally to  . Moreover, the convergence to � is linear with rate 0.382.

(c) In this case, we have g(x)= 1

x¡ 1 and g0(x)=¡ 1

(x¡ 1)2 .

Since jg0(�)j= �+1�2.618>1 and jg 0( )j= 1

�+1
�0.382<1, fixed-point iteration converges locally

to  but does not converge locally to �. Moreover, the convergence to  is linear with rate 0.382.

Armin Straub
straub@southalabama.edu

35



Order of convergence of Newton's method

Recall that computing a root x� of f(x) using Newton's method is equivalent to fixed-point

iteration of g(x)=x¡ f(x)

f 0(x)
.

Comment. In each case, we start with x0 and iteratively compute xn+1=xn¡
f(xn)

f 0(xn)
.

Theorem 69. Suppose that f is twice continuously differentiable and f(x�)= 0.

� (typical case) Newton's method (locally) converges to x� quadratically with rate
1

2
jf 00(x�)/f 0(x�)j provided that f 0(x�)=/ 0.

� (troubled case) If f 0(x�) = 0, then Newton's method either does not converge at all
or it converges linearly.

Note that, if f(x�)=0 and f 0(x�)=0, then x� is a repeated root of f(x). We thus conclude that Newton's
method is troubled if we are trying to compute a repeated root.

� (exceptionally good case) If f 0(x�)=/ 0 and f 00(x�)=0, then Newton's method even
converges with order at least 3.

Important comment. In short, Newton's method typically converges quadratically (though in very special cases
it can converge even faster) except in the case of repeated roots.

Proof. We apply Theorem 65 to analyze the fixed-point iteration of g(x)= x¡ f(x)
f 0(x)

.

Using the quotient rule we compute that

g 0(x)= 1¡ f 0(x)f 0(x)¡ f(x)f 00(x)
f 0(x)2

=
f(x)f 00(x)
f 0(x)2

:

If f(x�) = 0 and f 0(x�) =/ 0, then we have g 0(x�) = 0. By Theorem 65 this implies that fixed-point iteration
converges at least quadratically.
To determine the rate of convergence, we further compute (again using the quotient and product rule) that

g 00(x)=
(f 0(x)f 00(x)+ f(x)f 000(x))f 0(x)2¡ 2f(x)f 00(x)f 0(x)f 00(x)

f 0(x)4
:

From this (unsimplified) expression and f(x�)= 0 we conclude that g00(x�)= f 00(x�)
f 0(x�)

.

By Theorem 65 this implies that the convergence is quadratic with rate 1
2

��������f 00(x�)f 0(x�)

��������.
Moreover, if f 00(x�)= 0 then g00(x�)= 0 so that the convergence is cubic (or higher). �

Example 70. (cont'd) Does Newton's method applied to finding a root of f(x)=x3¡2 converge
locally to 23

p
? If so, determine the order and the rate.

This is a continuation of Examples 60 and 67.

Solution. Recall that Newton's method typically converges to x� with order 2 and rate 1

2

������f 00(x�)
f 0(x�)

������.
With x�= 23p , we compute f 0(x�)=3(x�)2=3 �22/3. Since f 0(x�)=/ 0, we already know that Newton's method
converges at least with order 2.
We further compute f 00(x�)=6x�=6 � 21/3=3 �24/3. Since f 00(x�)=/ 0, we know that Newton's method does
not converge with order larger than 2.

Therefore, Newton's method converges to x�= 23p with order 2 and rate 1
2

������f 00(x�)
f 0(x�)

������= 1

2

3 � 24/3

3 � 22/3
=2¡1/3�0.7937.

Of course, this matches what we computed in Example 67.
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Example 71. f(x) = e¡x ¡ x has the unique root x� � 0.567. Determine whether Newton's
method converges locally to x�. If it does, what is the order and rate of convergence?
Solution. We compute that f 0(x)=¡e¡x¡ 1 and f 00(x)= e¡x.

Since x�= e¡x
�
, we have f 0(x�)=¡x�¡ 1=/ 0.

Hence, by Theorem 69, Newton's method converges to x� quadratically.

Moreover, the rate is 1
2

������f 00(x�)
f 0(x�)

������= 1

2

������ e¡x
�

¡e¡x�¡ 1

������= 1

2

������ x�

¡x�¡ 1

������� 0.181.

Review. If f(x�)=0 and f 0(x�)=/ 0, then Newton's method (locally) converges to x� quadrat-

ically with rate 1

2
jf 00(x�)/f 0(x�)j.

Note that we can see from here that f 0(x�) = 0 is problematic; indeed, in that case, we don't get quadratic
convergence (but rather divergence or linear convergence).
We can also see that, if f 00(x�) = 0, then we should get even better convergence; indeed, in that case, we get
cubic convergence or better.

Example 72. Consider f(x)=(x¡ r)(x¡1)(x+2) where r is some constant. Suppose we want
to use Newton's method to calculate the root x�=1.

(a) For which values of r is Newton's method guaranteed to converge (at least) quadratically
to x�=1?

(b) Analyze the cases in which Newton's method does not converge quadratically to x�= 1.
Does it still converge? If so, what can we say about the order and rate of convergence?

(c) For which values of r does Newton's method converge to x�=1 faster than quadratically?

Solution.

(a) We have f(x)=x3¡ (r¡ 1)x2¡ (r+2)x+2r and, hence, f 0(x)= 3x2¡ 2(r¡ 1)x¡ (r+2).
Note that f 0(1)=3¡ 3r=0 if and only if r=1.
Theorem 69 implies that Newton's method converges (at least) quadratically to x�=1 if r=/ 1.
Comment. Note that r=1 is precisely the case where 1 becomes a double root of f(x).

(b) We need to analyze the case r=1.
In that case f(x)= (x¡ 1)2(x+2) and f 0(x)= 3x2¡ 3=3(x¡ 1)(x+1).
Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ (x¡ 1)2(x+2)
3(x¡ 1)(x+1)

= x¡ x2+ x¡ 2
3(x+1)

=
2
3
x+

2
3

1
x+1

:

We compute that g 0(x)= 2

3
¡ 2

3

1

(x+1)2
so that, in particular, g 0(1)= 2

3
¡ 2

3

1

4
=
1

2
.

Since 0=/ jg 0(1)j< 1 we conclude, by Theorem 65, that Newton's method (locally) converges to x�=1.
Moreover, the convergence is linear with rate 1

2
.

Comment. Since 1

2
=2¡1, this means that we gain roughly one correct binary digit per iteration.

(c) We continue the calculation from the first part. According to Theorem 69, Newton's method converges
to 1 faster than quadratic if f 0(1)=/ 0 and f 00(1)= 0.
We calculate f 00(x)= 6x¡ 2(r¡ 1). Thus f 00(1)=8¡ 2r=0 if and only if r=4.
Hence, Newton's method converges to 1 faster than quadratic if r=4.

Important comment. Note that what we are observing is exactly as what we should expect: Newton's method
typically converges quadratically (though in very special cases it can converge even faster; here, r=4) except in
the case of repeated roots (here, r=1).
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Example 73. Python The following code implements the Newton method specifically for com-
puting a root of f(x)= (x¡ r)(x¡ 1)(x+2) as in the previous example.

>>> def newton_f(r, x, nr_steps):
for i in range(nr_steps):

x = x - ((x-r)*(x-1)*(x+2))/(3*x**2-2*(r-1)*x-r-2)
return x

We then write a function to tell us the how close the result of Newton's method is to x�=1 (the
root that we are trying to compute). Namely, newton_f_cb_1 will return the number of correct
digits in base 2.
>>> from math import log2

>>> def newton_f_cb_1(r, x, nr_steps):
return -log2(abs(1 - newton_f(r, x, nr_steps)))

Here is the typical behaviour which we get if r=/ 1 and r=/ 4. We chose r=2 and for the initial
approximation we chose x0= 0.4. First, we list the result of Newton's method and observe that
the approximations are indeed approaching 1 (recall that we are only guaranteed convergence if
x0 is close enough to 1). We then list the number of correct bits for those approximations:

>>> [newton_f(2, 0.4, n) for n in range(1,5)]

[0.9333333333333332, 0.9974499089253187, 0.9999956903710115, 0.9999999999876182]

>>> [newton_f_cb_1(2, 0.4, n) for n in range(1,5)]

[3.9068905956085165, 8.615235511834927, 17.824004894803025, 36.2329923774517]

Observe how the number of correct digits indeed roughly doubles.

Next, we likewise consider the problematic case r=1:
>>> [newton_f(1, 0.4, n) for n in range(1,5)]

[0.7428571428571429, 0.877751756440281, 0.9402023433223725, 0.9704083354780979]

>>> [newton_f_cb_1(1, 0.4, n) for n in range(1,5)]

[1.9593580155026542, 3.032114357937968, 4.063767239896592, 5.078665339814252]

Observe how the number of correct digits no longer doubles. Instead it roughly increases by 1 per
iteration, exactly as we had predicted.

Finally, we consider the exceptionally good case r=4:
>>> [newton_f(4, 0.4, n) for n in range(1,5)]

[1.0545454545454547, 0.9999639010889838, 1.0000000000000104, 1.0]

>>> [newton_f_cb_1(4, 0.4, n) for n in range(1,4)]

[4.1963972128035, 14.757685157968053, 46.445411148322364]

Observe how the number of correct digits now roughly triples, in accordance with our prediction.
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Comparison of root finding algorithms

Now that we have seen several root finding algorithms, which one is the best?

Well, it really depends on the situation. Below are some of the differences between the methods.

In practice, one often uses hybrid algorithms that combine several methods.

All methods require a continuous function.

� Bisection
each iteration is guaranteed to provide a correct binary digit; no other method can guarantee this for
all functions
requires an initial interval containing a root such that the function values at the endpoints have opposite
signs (in particular, does not work for double roots (or any even order roots)); on the other hand, it
provides a guaranteed interval containing the root
no requirement on f(x) besides continuity; for the other methods, the performance depends on f(x)

essentially linear convergence with rate 1

2

� Regula falsi
also requires an initial interval containing a root like bisection
one endpoint of the interval typically gets stuck
rarely used directly, but rather in its improved forms, such as the Illinois method
always converges, typically linearly with variable rate

� Illinois method (see next pages for bonus material!)

improved version of regula falsi
the interval now shrinks to root
always converges, typically with order 33p � 1.442

� Secant method
only requires an initial approximation
only converges if initial approximation is good enough
potential numerical issues due to loss of precision in near zero denominator
typical order of convergence �=(1+ 5

p
)/2� 1.618

� Newton's method
similar to secant method
requires derivative
extends well to other contexts such as approximating functions or power series rather than numbers
typical order of convergence 2
however, adjusted for two function evaluations (f(x) and f 0(x)), order of convergence 2

p
� 1.414
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Bonus material: The Illinois method

Example 74. Python In Example 39 we implemented the regula falsi method. As we have
observed, a weakness of this method is that we typically end up only updating one endpoint of the
interval. The Illinois algorithm is an extension of the regula falsi method that works to remedy
this issue.

Recall that the regula falsi method uses c= afb¡ bfa
fb¡ fa

with fa= f(a) and fb= f(b) to cut each

interval [a; b] into the two parts [a; c] and [c; b].
The Illinois algorithm proceeds likewise but, after an endpoint has been retained for a second
time, the corresponding value fa or fb is replaced with half its value. In other words, if a was not
updated in this or the previous step, then fa (to be used in the next iteration) is replaced with
fa/2; likewise, if b was not updated in this or the previous step, then fb is replaced with fb/2.

# start with an interval [a,b]
fa = f(a)
fb = f(b)
repeat
# compute the regula falsi point
c = (a*fb - b*fa) / (fb - fa)
fc = f(c)
# set new interval [a,b] according to signs of f
...
if left endpoint was also updated the previous time
fb = fb/2

if right endpoint was also updated the previous time
fa = fa/2

Can you complete this pseudo-implementation? Here is one approach that we can take:

� Start with the code that we wrote in class for the regula falsi method.

� Adjust that code (like we did for the bisection method) to only use one function evaluation
per iteration. Do that by introducing variables fa, fb, fc for the values of f(x) at x=a;
b; c.

� Add a new variable to your code that keeps track of whether we most recently changed
the left or the right endpoint of the interval. You can, for instance, define a variable
updated_endpoint that is initially set to 0, and which is set to 1 after the right endpoint
is updated and to ¡1 after the left endpoint is updated.
That way, if we are about to update, say, the left endpoint, then we can test whether
updated_endpoint is ¡1 as that would tell us that we are now updating the left endpoint
for a second time in a row. In that case, we set fb = fb/2.

Advanced comment. There are other, more clever, approaches to implementing the Illinois method. For instance,
one could stop making a and b the left and right endpoints of the interval and, instead, always make b the newly
added endpoint; then one can test whether we repeatedly change the same endpoint by looking at the signs of
the corresponding values of f . This is done by M. Dowell and P. Jarratt in [A Modified Regula Falsi Method
for Computing the Root of an Equation, 1971], where they describe and analyze the Illinois method. As a very
minor point, their implementation might proceed slightly different from ours because we start with an interval
[a; b] whereas their implementation thinks of a and b as two approximations, with b being the more �recent� one
(accordingly, their implementation might divide fa by 2 already at the end of the first iteration).
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Let us revisit the computations we did in Example 38 but with the regula falsi method updated
to the Illinois algorithm. The first two iterations should result in the same intervals:

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> illinois(my_f, Fraction(1), Fraction(2), 1)

[Fraction(8, 7), Fraction(2, 1)]

>>> illinois(my_f, Fraction(1), Fraction(2), 2)

[Fraction(75, 62), Fraction(2, 1)]

However, at the end of the second iteration (since the right endpoint has not changed in this or
the previous iteration), fb= 6 (since f(2) = 6) is replaced with fb= 3. As a result, in the third
iteration, we end up replacing the right endpoint:

>>> illinois(my_f, Fraction(1), Fraction(2), 3)

[Fraction(75, 62), Fraction(974462, 769765)]

For further testing, in the next two iterations we replace the left endpoints (since the fractions
are becoming large, we are using floats below; note that the first command just repeats the above
computation with floats):

>>> illinois(my_f, 1, 2, 3)

[1.2096774193548387, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 4)

[1.2596760796087871, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 5)

[1.2599198867703156, 1.2659214175754938]

Consequently, at the end of the fifth iteration, the value of fb (which is f(1.2659:::)) is again
replaced by half its value. Once more, this results in b being updated in the next iteration:

>>> illinois(my_f, 1, 2, 6)

[1.2599198867703156, 1.2599222015292841]
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Notes for Lecture 11 Mon, 10/9/2023

How computers represent functions
From classes like calculus, we are probably used to representing functions symbolically, such as:

f(x)= x sin(3x¡ 1)
x2+1

Advantage. Because this is an exact expression, there is no loss of precision. Moreover, our calculus skills allow
us to compute things like derivatives exactly.
Disadvantage. Computing with such formulas quickly results in very complicated expressions. Generally, things
can get very slow very quickly. (Keep in mind the explosion in size of the rational numbers when we ran, for
instance, Newton's method using exact numbers rather than floats.)

Moreover, in practice, a function of interest often simply doesn't have a symbolic expression. In
such cases, we have to work with an approximation. There are many different ways to numerically
represent and approximate a function.
For instance, we have already approximated functions using Taylor polynomials (these are partic-
ularly good at representing a function near a single point), which are truncations of the function's
Taylor series. Another representation you have likely seen in other classes are Fourier series (com-
binations of sine and cosine functions) and their truncations.
A very basic numerical way to describe a function numerically is via a table of function values.
In that case, how should we compute the function at an intermediate value not included in the
table? This leads us to polynomial interpolation as well as to splines.

Interpolation
Suppose we have d+1 points (x0; y0); (x2; y2); :::; (xd; yd). A function f(x) is said to interpolate
these points if f(xi)= yi for all i2f0; 1; :::; dg.
An important case is to interpolate given points using a polynomial.
Why polynomials? Recall that any polynomial in x of degree n can be written as

anx
n+ an¡1x

n¡1+ ���+ a1x+ a0

with some coefficients aj. The reason that these are so ubiquitous is that polynomials are precisely what can be
constructed via addition and multiplication starting with numbers and a variable x.

Example 75. (warmup) Suppose we wish to interpolate the points (0; 1); (1; 2); (2; 5) using a
polynomial.
Just as two points determine a line, these three points should determine a parabola a0+ a1x+ a2x2.
Indeed, note that there are three degrees of freedom (namely, a0; a1; a2) and that each point gives rise to an
equation. Three equations should determine the values of the three unknowns uniquely.
Let us spell out the three equations:
(0; 1): a0=1

(1; 2): a0+ a1+ a2=2

(2; 5): a0+2a1+4a2=5

We can solve these to find a0=1, a1=0, a2=1 so that the corresponding interpolating polynomial is x2+1.
However, in general solving a system of equations is a lot of work! In the next sections, we will see that there
are better and more efficient ways that avoid a lot of this work.
Also note that, from this point of view, it is not completely clear that the system of equations is always solvable.
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Polynomial interpolation: the Lagrange form

Example 76. Interpolate the points (0; 1); (1; 2); (2; 5) using a polynomial.

Solution. Without any computations, we can actually immediately write down such a polynomial:

p(x)= 1
(x¡ 1)(x¡ 2)
(0¡ 1)(0¡ 2) + 2

(x¡ 0)(x¡ 2)
(1¡ 0)(1¡ 2) + 5

(x¡ 0)(x¡ 1)
(2¡ 0)(2¡ 1)

This is the Lagrange form of the interpolating polynomial. Carefully look at this expression to see why it
interpolates the three points! For instance, why is p(1)=2? Note that only the middle term contributes to p(1)
because the other two terms have a factor of x¡ 1.
We can then simplify the above p(x) to get p(x)= 1

2
(x¡ 1)(x¡ 2)¡ 2x(x¡ 2)+ 5

2
x(x¡ 1)= x2+1.

As in the previous example, we can always write down an interpolating polynomial. In particular,
this allows us to conclude the following.
Comment. Note that this is not surprising. It is a generalization of the well-known fact that two points determine
a unique interpolating line.

Theorem 77. Given d+1 points (x0; y0); (x2; y2); :::; (xd; yd) with distinct xi, there exists a
unique interpolating polynomial of degree at most d.

Proof. Existence follows because, as in the previous example, we can explicitly write down such an interpolating
polynomial p(x) as

p(x)=
X
j=0

d

yj

Q
i=/ j

(x¡ xi)Q
i=/ j

(xj¡xi)
:

For uniqueness, suppose there are two interpolating polynomials p(x) and q(x) of degree at most d. The
difference p(x)¡ q(x) has degree at most d. On the other hand, p(x)¡ q(x) has d+1 roots because it vanishes
for x=x0;x1; :::;xd. Since a nonzero polynomial of degree at most d cannot have more than d roots, we conclude
that p(x)¡ q(x)= 0. �

Example 78. Interpolate the points (0; 1); (1; 3); (2; 5) using a polynomial of least degree.

Solution. The interpolating polynomial in Lagrange form is:

p(x) = 1
(x¡ 1)(x¡ 2)
(0¡ 1)(0¡ 2) + 3

(x¡ 0)(x¡ 2)
(1¡ 0)(1¡ 2) + 5

(x¡ 0)(x¡ 1)
(2¡ 0)(2¡ 1)

=
1
2
(x¡ 1)(x¡ 2)¡ 3x(x¡ 2)+ 5

2
x(x¡ 1)

= 2x+1

Comment. Note that this is the special case where three points end up being on a single line. However, note
that this wasn't obvious from the Lagrange form until we expanded it out to 2x+1.
We will next see an alternative approach (Newton's divided differences) to obtaining the interpolating polynomial
which, as one benefit (among others), will make it apparent that the resulting polynomial is of lower than expected
degree.
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Polynomial interpolation: the Newton form

We have seen that, given d+1 points (x0; y0); (x2; y2); :::; (xd; yd) with distinct xi, there exists
a unique interpolating polynomial p(x) of degree at most d.

The Lagrange form of this polynomial is p(x)=
X
j=0

d

yj

Q
i=/ j

(x¡xi)Q
i=/ j

(xj¡xi)
.

The Newton form instead expresses the polynomial in the form

p(x)= c0+ c1(x¡x0)+ c2(x¡x0)(x¡x1)+ c3(x¡x0)(x¡x1)(x¡x2)+ :::

Comment. Note that the Newton form of a polynomial can be thought of as a generalization of Taylor expansion.
Indeed, we get Taylor expansion around x= c if we choose all xi to be equal to c (of course, for the purposes
of interpolation, the xi will be different).

Example 79. Determine the minimal polynomial interpolating the points (¡3;¡1); (¡1;5);(0;8);
(2;¡1).
Solution. (Lagrange) The interpolating polynomial in Lagrange form is:

p(x) = ¡1 (x+1)x(x¡ 2)
(¡3+1)(¡3)(¡3¡ 2) +5

(x+3)x(x¡ 2)
(¡1+3)(¡1)(¡1¡ 2) +8

(x+3)(x+1)(x¡ 2)
(0+ 3)(0+ 1)(0¡ 2) ¡ 1

(x+3)(x+1)x
(2+ 3)(2+ 1)2

= ¡1
2
x3¡ 2x2+ 3

2
x+8

Solution. (Newton, direct approach) The interpolating polynomial in Newton form is

p(x)= c0+ c1(x+3)+ c2(x+3)(x+1)+ c3(x+3)(x+1)x:

We use the four points to solve for the coefficients ci:

(¡3;¡1) : c0=¡1
(¡1; 5) : c0

¡1

+2c1=5 =) c1=3

(0; 8) : c0
¡1

+3c1
3

+3c2=8 =) c2=0

(2;¡1) : c0
¡1

+5c1
3

+ 15c2
0

+ 30c3=¡1 =) c2=¡
1
2

Hence, p(x)=¡1+3(x+3)¡ 1

2
(x+3)(x+1)x=¡1

2
x3¡ 2x2+ 3

2
x+8.

Comment. Note how, by design of the Newton form, the equation for each point engaged one additional
coefficient cj, allowing us to solve for cj (without having to combine several equations).
In particular, note how we are building intermediate interpolating polynomials:

� c0+ c1(x+3)=¡1+3(x+3) interpolates (¡3; 1); (¡1; 6).

� c0+ c1(x+3)+ c2(x+3)(x+1)=¡1+3(x+3) interpolates (¡3; 1); (¡1; 6); (0; 3).
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Newton's divided differences

Next, we observe an alternative way of computing the coefficients cj in the Newton form

p(x)= c0+ c1(x¡x0)+ c2(x¡x0)(x¡x1)+ c3(x¡x0)(x¡x1)(x¡x2)+ ::: (1)

for interpolating a function f at x=x0; x1; x2; :::.

Example 80. Determine the first few coefficients. Below, we will use the following notation for
these coefficients: c0= f [x0], c1= f [x0; x1], c2= f [x0; x1; x2], . . . .

Solution. For brevity, we write yj= f(xj).

� Using (x0; y0): p(x0)= c0=
!
y0

f [x0] = c0= y0

� Using (x1; y1): p(x1)= c0+ c1(x1¡ x0)=
!
y1

f [x0; x1] = c1=
y1¡ y0
x1¡x0

Note that the coefficient f [x0; x1] is a divided difference (the slope of the line through the two points).

� Using (x2; y2): p(x2)= c0+ c1(x2¡ x0)+ c2(x2¡ x0)(x2¡ x1)=
!
y2

f [x0; x1; x2] = c2=
y2¡ y0¡

y1¡ y0
x1¡x0

(x2¡x0)
(x2¡ x0)(x2¡ x1)

=

y2¡ y0
x2¡ x0

¡ y1¡ y0
x1¡ x0

x2¡x1
=
f [x0; x2]¡ f [x0; x1]

x2¡ x1
The coefficient f [x0; x1; x2] is what we call a divided difference of order 2.

Definition 81. Define f [x0; x1; :::; xn] to be the coefficient of xn (the highest power of x) in
the minimal-degree polynomial interpolating f at x=x0; x1; :::; xn.

Important. In other words, f [x0; x1; :::; xn] is the coefficient cn in the Newton form (1).
f [x0; x1; :::; xn] is called a divided difference of order n of the function f because of the recursive relation
illustrated in the previous example, which is proven in general in the next theorem.
Note that, by definition, f [x0; x1; :::; xn] does not depend on the order of the points.

Theorem 82. The divided differences f [x0;x1; :::;xn] are recursively determined by f [a]= f(a)
as well as the relation

f [P ; a; b] = f [P ; b]¡ f [P ; a]
b¡ a ;

where P is a set of points.

For instance. With P = x1; :::; xn¡1 and a= x0, b=xn, the recursive relation becomes

f [x0; :::; xn] =
f [x1; :::; xn]¡ f [x0; :::; xn¡1]

xn¡ x0
:
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Proof. Suppose that P = fx0; :::; xng and that

p0(x)= c0+ c1(x¡x0)+ c2(x¡ x0)(x¡ x1)+ :::+ cn(x¡ x0)(x¡ x1)���(x¡ xn¡1)

is the interpolating polynomial for x0; :::; xn. Then

pa(x) = p0(x)+ f [P ; a](x¡ x0)(x¡ x1)���(x¡ xn¡1)(x¡ xn);
pb(x) = p0(x)+ f [P ; b](x¡x0)(x¡x1)���(x¡xn¡1)(x¡ xn)

are the interpolating polynomials for x0; :::; xn; a and x0; :::; xn; b, respectively. The claim follows if we can show
that

pa;b(x)= pa(x)+
f [P ; b]¡ f [P ; a]

b¡ a (x¡x0)(x¡x1)���(x¡xn¡1)(x¡ xn)(x¡ a)

is the interpolating polynomial for x0; :::; xn; a; b. By construction, it interpolates x=x0; :::; xn; a. To see that
it also interpolates x= b, note that

pa;b(b) = pa(b)+ (f [P ; b]¡ f [P ; a]) (b¡ x0)(b¡ x1)���(b¡xn¡1)(b¡ xn)
= p0(b)+ f [P ; a] (b¡x0)���(b¡xn¡1)(b¡ xn) + (f [P ; b]¡ f [P ; a]) (b¡ x0)���(b¡ xn)
= p0(b)+ f [P ; b] (b¡ x0)���(b¡ xn¡1)(b¡xn)
= pb(b)= f(b):

�

(Newton form using divided differences)
The Newton form of the polynomial p(x) interpolating f at x=x0; x1; ::: is

p(x)= c0+ c1(x¡x0)+ c2(x¡x0)(x¡x1)+ c3(x¡x0)(x¡x1)(x¡x2)+ :::;

where the coefficients cn= f [x0; x1; :::; xn] can be computed using the triangular scheme:

f [�] f [�; �] f [�; �; �] f [�; �; �; �] :::
x0 f [x0]

f [x0; x1] =
f [x1]¡ f [x0]
x1¡x0

x1 f [x1] f [x0; x1; x2] =
f [x1; x2]¡ f [x0; x1]

x2¡x0
f [x1; x2] =

f [x2]¡ f [x1]
x2¡x1

f [x0; x1; x2; x3] = :::

x2 f [x2] f [x1; x2; x3] =
f [x2; x3]¡ f [x1; x2]

x3¡x1
:::

f [x2; x3] =
f [x3]¡ f [x2]
x3¡x2

:::

x3 f [x3] ::: :::

Note that the coefficients cn= f [x0; x1; :::; xn] needed for the Newton form appear at the top edge of the
triangle (in the shaded cells).
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Example 83. Determine the minimal polynomial interpolating the points (¡3;¡1); (¡1;5);(0;8);
(2;¡1).
Solution. (Newton, direct approach; again, for comparison) The interpolating polynomial in Newton form is

p(x)= c0+ c1(x+3)+ c2(x+3)(x+1)+ c3(x+3)(x+1)x:

We use the four points to solve for the coefficients ci:

(¡3;¡1) : c0=¡1
(¡1; 5) : c0

¡1

+2c1=5 =) c1=3

(0; 8) : c0
¡1

+3c1
3

+3c2=8 =) c2=0

(2;¡1) : c0
¡1

+5c1
3

+ 15c2
0

+ 30c3=¡1 =) c2=¡
1
2

Hence, p(x)=¡1+3(x+3)¡ 1

2
(x+3)(x+1)x=¡1

2
x3¡ 2x2+ 3

2
x+8.

Solution. (Newton, divided differences)

f [�] f [�; �] f [�; �; �] f [�; �; �; �]
¡3 ¡1

5¡ (¡1)
¡1¡ (¡3) = 3

¡1 5
3¡ 3

0¡ (¡3) =0

8¡ 5
0¡ (¡1) =3

¡5

2
¡ 0

2¡ (¡3) =¡
1
2

0 8
¡9

2
¡ 3

2¡ (¡1) =¡
5
2

¡1¡ 8
2¡ 0 =¡9

2
2 ¡1

Accordingly, reading the coefficients from the top edge of the triangle (as shaded above), the Newton form is

p(x)=¡1+3(x+3)¡ 1
2
(x+3)(x+1)x=¡1

2
x3¡ 2x2+ 3

2
x+8;

in agreement with what we had computed earlier.
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Notes for Lecture 12 Wed, 10/11/2023

Example 84. Determine the minimal polynomial interpolating (0;¡1); (2; 1); (3; 8).
Solution. (Lagrange) The interpolating polynomial in Lagrange form is:

p(x) = ¡1 (x¡ 2)(x¡ 3)
(0¡ 2)(0¡ 3) +1

(x¡ 0)(x¡ 3)
(2¡ 0)(2¡ 3) +8

(x¡ 0)(x¡ 2)
(3¡ 0)(3¡ 2)

= ¡1
6
(x¡ 2)(x¡ 3)¡ 1

2
x(x¡ 3)+ 8

3
x(x¡ 2)=2x2¡ 3x¡ 1

Solution. (Newton, direct approach) The interpolating polynomial in Newton form is

p(x)= c0+ c1(x¡ 0)+ c2(x¡ 0)(x¡ 2):

We use the three points to solve for the coefficients ci:

� (0;¡1): c0=¡1.

� (2; 1): c0
¡1

+2c1=1, so that c1=1.

� (3; 8): c0
¡1

+3c1
1

+3c2=8, so that c2=2.

Hence, p(x)=¡1+1(x¡ 0)+ 2(x¡ 0)(x¡ 2)= 2x2¡ 3x¡ 1.

Solution. (Newton, divided differences)

0: ¡1
1¡ (¡1)
2¡ 0 =1

2: 1
7¡ 1
3¡ 0 =2

8¡ 1
3¡ 2 =7

3: 8

Accordingly, reading the coefficients from the top edge of the triangle, the Newton form is

p(x)=¡1+1(x¡ 0)+ 2(x¡ 0)(x¡ 2)= 2x2¡ 3x¡ 1:

Example 85. (homework) Repeat the previous example with the additional point (1;¡2).
Solution. (Newton, divided differences) Notice how only the shaded entries are new.

0: ¡1
1¡ (¡1)
2¡ 0 =1

2: 1
7¡ 1
3¡ 0 =2

8¡ 1
3¡ 2 =7

2¡ 2
1¡ 0 =0

3: 8
5¡ 7
1¡ 2 =2

¡2¡ 8
1¡ 3 =5

1: ¡2

Since the point (1;¡2) is on the graph of 2x2¡3x¡1, we obtained the same final polynomial. If we had added
a point not on the graph, then we would have found a degree 3 polynomial interpolating the total of four points.

Important comment. This is a considerable advantage for many practical purposes since often one does not
know a priori how many interpolation points to use.
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Example 86. Python numpy and scipy are powerful scientific libraries for Python. While numpy
provides core functionality, scipy implements more specialized routines such as interpolation.
>>> from numpy import linspace, pi, sin

>>> from scipy import interpolate

Comment. We previously used the sin function available in the math Python standard library. The numpy library
offers its own sin function with additional features. For instance, try sin([1,2]). This evaluates sin(x) at
both x=1 and x=2. On the other hand, this results in an error with the sin function not from numpy.

Let us interpolate f(x) = sin(x) using 3 points, namely x0 = 0, x1 =
�

2
, x2 = �. We begin by

making lists of the x and y values as follows:
>>> xpoints = [0, pi/2, pi]

>>> ypoints = [sin(x) for x in xpoints]

Comment. As pointed out in the previous comment, we can even simply use ypoints = sin(xpoints). (The
result would be a numpy array instead of a standard list but, for basic purposes, these behave alike. The numpy
library introduces and uses arrays for additional features and performance for scientific computations.)

Let us check that xpoints and ypoints hold the expected values:
>>> xpoints

[0, 1.5707963267948966, 3.141592653589793]

>>> ypoints

[0.0, 1.0, 1.2246467991473532e-16]

We now ask scipy to create the interpolating polynomial:
>>> poly = interpolate.lagrange(xpoints, ypoints)

The resulting polynomial can be evaluated at any other point (such as x = � /4) and we can
access its coefficients (which tell us that the polynomial is approximately ¡0.41x2+ 1.27x):
>>> poly(pi/4)

0.75

>>> sin(pi/4)

0.7071067811865475

>>> poly.coeffs

[-0.40528473456935116, 1.2732395447351628, 0.0]

Homework. Show that the exact interpolation polynomial is 4

�
x¡ 4

�2
x2.

Finally, let us plot the sine function together with the polynomial interpolation. In the code below
we use matplotlib, a powerful and widely used plotting library.
>>> import matplotlib.pyplot as plt

>>> xplot = linspace(0, pi, 100)

>>> plt.plot(xpoints, ypoints, 'o', xplot, sin(xplot), '-', xplot, poly(xplot), ':')

>>> plt.show()

Comment. Note that we are making three plots in one line here (namely, we plot the three points, we plot sine,
and we plot the polynomial interpolation).
To plot just sine, simplify the plot command to plt.plot(xplot, sin(xplot), '-'). The '-' connects the
100 points (with x-coordinates from xplot) by a line. Replace it, for instance, with 'r-.' to get a red dotted line.
https://matplotlib.org/stable/tutorials/introductory/pyplot.html
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The resulting output should look as follows:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

This shows pretty decent interpolation on the interval [0; �].
Which function is which?! (You can tell from the fact that we dotted one graph or from the plots below.)

On the other hand, here are the same plots on
h
¡�

2
;
3�

2

i
and [¡�; 2�]:

1 0 1 2 3 4 5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

2 0 2 4 6

8

6

4

2

0

Homework. Adjust our code above (only the line linspace(0, pi, 100) needs to be changed) to produce
these two plots.

As we can see (and as we probably expected), the polynomial interpolation does not approximate
the sine function well outside the interval [0; �].
Comment. Given the three interpolation points 0; � /2; �, an attempt to approximate the function at values
much less than 0 or much larger than � (that is, outside of the range of our data) is typically referred to as
extrapolation.
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Notes for Lecture 13 Mon, 10/16/2023

Example 87. Determine the minimal polynomial interpolating (0; 1); (1; 2); (2; 5).
Solution. (Lagrange, review) The interpolating polynomial in Lagrange form is:

p(x) = 1
(x¡ 1)(x¡ 2)
(0¡ 1)(0¡ 2) + 2

(x¡ 0)(x¡ 2)
(1¡ 0)(1¡ 2) + 5

(x¡ 0)(x¡ 1)
(2¡ 0)(2¡ 1)

=
1
2
(x¡ 1)(x¡ 2)¡ 2x(x¡ 2)+ 5

2
x(x¡ 1)

= x2+1

Solution. (Newton, divided differences)

0: 1
2¡ 1
1¡ 0 =1

1: 2
3¡ 1
2¡ 0 =1

5¡ 2
2¡ 1 =3

2: 5

Accordingly, reading the coefficients from the top edge of the triangle:

p(x)= 1+1(x¡ 0)+ 1(x¡ 0)(x¡ 1)= x2+1

A mean value theorem for divided differences

Review. Themean value theorem (see Theorem 53; the special caseM=0 of Taylor's theorem)
states that, if f(x) is differentiable, then

f [a; b] = f(b)¡ f(a)
b¡ a = f 0(�)

for some � between a and b.

Recall that the Newton form of the polynomial interpolating f(x) at x= x0; x1; ::: is

f [x0] + f [x0; x1](x¡ x0)+ f [x0; x1; x2](x¡x0)(x¡x1)+ f [x0; x1; x2; x3](x¡x0)(x¡x1)(x¡x2)+ :::

Note that this is somewhat similar to the Taylor expansion of f(x) at x= x0, which is

f(x0)+ f 0(x0)(x¡x0)+ 1

2!
f 00(x0)(x¡ x0)2+ 1

3!
f 000(x0)(x¡x0)3+ :::

Indeed, if all the xj are equal to x0 (this is technically not allowed when interpolating, but you can still think of
choosing them all close to x0), then the Newton form would turn into a Taylor polynomial.
In that case, f [x0; x1; :::; xn] would become 1

n!
f (n)(x0).

With that (as well as the mean value theorem and Taylor's theorem (see Theorem 52)) in mind,
the next result does not come as a surprise.
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Theorem 88. (mean value theorem for divided differences) If f(x) is differentiable, then

f [x0; x1; :::; xn] =
f (n)(�)
n!

for some � between the smallest and the largest of the xi.

Proof. Without loss of generality, we may assume that x0<x1< ���<xn (because divided differences do not
depend on the ordering of the points xi).
Let P (x) be the interpolation polynomial for f at x0; x1; :::; xn. Then d(x) = f(x)¡ P (x) has n+ 1 zeros,
namely x0; x1; :::; xn. The mean value theorem implies that between any two zeros of a function, there must
be a zero of its derivative (this is often referred to as Rolle's theorem). It therefore follows that d0(x) has n
zeros (between x0 and xn). Applying the same argument to d0(x), we then find that d00(x) has n ¡ 1 zeros.
Continuing like this, d(n)(x) must have a zero � between x0 and xn. As such,

0= d(n)(�)= f (n)(�)¡P (n)(�):

Recall that P (x) is a polynomial of degree n or less, and that its Newton form is

P (x)= c0+ c1(x¡ x0)+ c2(x¡x0)(x¡x1)+ :::+ cn(x¡x0)(x¡x1)���(x¡xn¡1);

where cj= f [x0; x1; :::; xj]. Note that P (n)(x)=n!cn=n!f [x0; x1; :::; xn]. We therefore conclude that

0= d(n)(�)= f (n)(�)¡P (n)(�)= f (n)(�)¡n!f [x0; x1; :::; xn];

which proves the claim. �

Comment. Note that this provides us with a way to numerically approximate an nth derivative f (n)(x). Namely,
choose n+1 points x0; x1; :::; xn near x. Then f (n)(x)�n!f [x0; x1; :::; xn]

=f (n)(�)

.

Bounding the interpolation error

Theorem 89. (interpolation error) Suppose that f(x) is n+ 1 times continuously differen-
tiable. Let Pn(x) be the interpolating polynomial for f(x) at x0; x1; :::; xn. Then

f(x)¡Pn(x)=
f (n+1)(�)
(n+1)!

(x¡x0)(x¡x1)���(x¡xn)

interpolation error

for some � between the smallest and the largest of the xi together with x.

Proof. Let Pn+1(x) be the interpolating polynomial for f(x) at x0; x1; :::; xn; xn+1. We know that

Pn+1(x) = Pn(x)+ f [x0; x1; :::; xn+1](x¡ x0)(x¡ x1)���(x¡ xn)

= Pn(x)+
f (n+1)(�)
(n+1)!

(x¡x0)(x¡x1)���(x¡ xn)

for some � between the smallest and the largest of the xi together with x.
Given any fixed value t, choose xn+1= t in this formula (so that Pn+1(t)= f(t)) to conclude that

f(t)=Pn+1(t)=Pn(t)+
f (n+1)(�)
(n+1)!

(t¡ x0)(t¡ x1)���(t¡ xn);

which is the claimed expression for the error term (with x replaced by t). �
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Example 90. Suppose we approximate f(x)= sin(x) by the polynomial P (x) interpolating it at
x=0; �

2
; �. Without computing P (x), give an upper bound for the error when x= �

4
.

[Compare with Example 86 where we computed and plotted P (x).]

Solution. By Theorem 89, the error is

sin(x)¡P (x)= f (3)(�)
3!

(x¡ 0)
�
x¡ �

2

�
(x¡�);

where � is between 0 and � (provided that x is in [0; �]). Note that f (3)(x) =¡cos(x) so that jf (3)(�)j6 1.
Hence, the error is bounded by

jsin(x)¡P (x)j6 1
6

������x�x¡ �
2

�
(x¡�)

������:
In particular, in the case x= �

4
,������sin��
4

�
¡P

�
�
4

�������6 1
6

���������4�¡�4 �
�
¡3�
4

���������= �3

128
� 0.242:

For comparison. In this particularly simple case, we can easily calculate the exact error.

Namely, since sin
¡ �
4

�
=

1

2
p and P

¡ �
4

�
=
3

4
(see Example 86), the actual error is

����sin¡ �
4

�
¡P

¡ �
4

������ 0.0428.

Below is a plot of the actual error (in blue) together with our bound (dotted).
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Homework. Following what we did in Example 86, try to reproduce this plot.

For which x in [0; �] is our bound for the error maximal? What is the bound in that case?

Solution. Recall that our bound for the error is 1
6

����x¡x¡ �

2

�
(x¡�)

����.
x
¡
x¡ �

2

�
(x¡�) is maximal on [0; �] for x=

�
1� 1

3
p

�
�

2
� 0.664; 2.478. (Fill in the details!)

The corresponding error bound is 1

72 3
p �3� 0.249.

Comment. Note that this shows that our earlier error bound for x = �

4
� 0.785 was close to the worst case.

That is not too much of a surprise since �

4
sits right between 0 and �

2
for which the error is 0 by construction.

For comparison. The actual maximal error occurs when cos(x)¡ 4

�
+

8

�2
x=0. (Why?!)

The approximate solutions are x� 0.472; 2.670 with corresponding (actual) error of 0.0560.
Make sure that you can identify both the x values and the error in the above plot.
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Example 91. (homework) Suppose we approximate a function f(x) by the polynomial P (x)
interpolating it at x=¡1;¡1

3
;
1

3
; 1. Suppose that we know that jf (n)(x)j6n for all x2 [¡1; 1].

(a) Give an upper bound for the error when x=¡2

3
.

(b) Give an upper bound for the error when x=0.

(c) Give an upper bound for the error for all x2 [¡1; 1].

Solution. By Theorem 89, the error is

f(x)¡P (x)= f (4)(�)
4!

(x+1)

�
x+

1
3

��
x¡ 1

3

�
(x¡ 1)= f (4)(�)

4!
(x2¡ 1)

�
x2¡ 1

9

�
;

where � is between ¡1 and 1 (provided that x2 [¡1; 1]). Since 1

4!
jf (4)(�)j6 4

4!
=
1

6
, the error is bounded by

jf(x)¡P (x)j6 1
6

��������(x2¡ 1)�x2¡ 1
9

���������:
(a) If x=¡2

3
, then this bound becomes jf(x)¡P (x)j6 1

6

������(x2¡ 1)�x2¡ 1

9

�������= 1

6
� 527 � 0.0309.

(b) If x=0, then this bound becomes jf(x)¡P (x)j6 1

6

������(x2¡ 1)�x2¡ 1

9

�������= 1

6
� 1
9
� 0.0185.

Comment. It is not surprising that this error bound is better than the one for x = ¡2

3
since, roughly

speaking, there are more interpolation nodes around 0.

(c) Consider g(x)= (x2¡ 1)
�
x2¡ 1

9

�
=x4¡ 10

9
x2+

1

9
. We need to compute max

x2[¡1;1]
jg(x)j.

Since g(�1)=0, the maximum value of jg(x)j must be attained at a point where g 0(x)= 0.

We compute g 0(x)= 4x3¡ 20
9
x. Hence g 0(x)= 0 if x=0 or x=� 5

p

3
.

Since jg(0)j= 1

9
and

������g�� 5
p

3

�������= 16
81
>
1

9
, we conclude that max

x2[¡1;1]
jg(x)j= 16

81
.

Thus, our error bound is max
x2[¡1;1]

jf(x)¡P (x)j6 1
6

max
x2[¡1;1]

��������(x2¡ 1)�x2¡ 1
9

���������= 1
6
� 16
81
� 0.0329.

Example 92. Python We can approximate
1
6

max
x2[¡1;1]

��������(x2¡1)�x2¡ 1
9

���������= 1
6
� 16
81
�0.0329 as

follows using 100 points.

>>> from numpy import linspace

>>> max([1/6*abs((x**2-1)*(x**2-1/9)) for x in linspace(-1,1,100)])

0.0328984640831

Example 93. Python The following code measures how well a function f is approximated by
the polynomial interpolating f at the given points. It returns an approximation of the maximal
error on the interval [a; b].
>>> from numpy import linspace, pi, cos, sin

>>> from scipy import interpolate

>>> def max_interpolation_error(f, a, b, xpoints, nr_sample_points):
ypoints = [f(x) for x in xpoints]
poly = interpolate.lagrange(xpoints, ypoints)
max_error = max([abs(f(x)-poly(x)) for x in linspace(a,b,nr_sample_points)])
return max_error
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Let us verify that this works using an example we have discussed before:
>>> max_interpolation_error(sin, 0, pi, [0,pi/2,pi], 100)

0.0560067197786

This agrees with the maximal error that we observed at the end of Example 90. Let us look how
the error develops as we add more points:
>>> [max_interpolation_error(sin, 0, pi, linspace(0,pi,n), 100) for n in range(2,9)]

[0.99987412767387496, 0.056006719778558423, 0.043613266903306247,
0.0018097268033398783, 0.0013114413108160916, 3.385907546618605e-05,
2.4246231325325551e-05]

It is pleasing to see that the error decreases. However, as we will see in the next example, this
does not have to be the case.
Comment. Note that the error seems to really decrease every second step (i.e. after adding two more points).
Can you offer an explanation for what might be the cause of this?

Example 94. Python However, this is not the end of the story. It turns out that the interpolation
error does not always go down if we add additional points.
>>> def f(x):

return 1/(1+25*x**2)

>>> [max_interpolation_error(f, -1, 1, linspace(-1,1,n), 100) for n in range(2,18)]

[0.9589941912351845, 0.6459699748665507, 0.7044952736346626, 0.4382728746134098,
0.43032461596244886, 0.6164015686420344, 0.24528527039305037, 1.0450782163781276,
0.297971540151836, 1.9154342696798625, 0.5538529081557272, 3.6117015978042333,
1.064460371610917, 7.189298472061041, 2.0967229089912, 14.013534491466531]

The function f(x)= 1

1+ 25x2 in this example is known as the Runge function and one can show

that, by adding more points, the error grows without bound.

lim
n!1

max
x2[¡;1;1]

jf(x)¡Pn(x)j=1

https://en.wikipedia.org/wiki/Runge%27s_phenomenon

The following plots show the situation using 10 and 12 interpolation nodes.
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While the approximation becomes better towards the center of the interval [¡1;1], the oscillations
towards the ends of the interval become more violant (resulting in an increasing worst-case error).
Next, we will see that we can avoid this issue if we don't choose equally spaced points but carefully
chosen ones called Chebyshev nodes.
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Notes for Lecture 14 Wed, 10/18/2023

Review. The Newton form of the polynomial interpolating f(x) at x= x0; x1; ::: is

f [x0] + f [x0; x1](x¡ x0)+ f [x0; x1; x2](x¡x0)(x¡x1)+ f [x0; x1; x2; x3](x¡x0)(x¡x1)(x¡x2)+ :::

Comparing this to the Taylor expansion of f(x) at x= x0, which is

f(x0)+ f 0(x0)(x¡x0)+ 1

2!
f 00(x0)(x¡ x0)2+ 1

3!
f 000(x0)(x¡ x0)3+ :::;

it is not surprising that, as we showed, f [x0; x1; :::; xn] =
1

n!
f (n)(�) for some � between the xi.

Recall that, if Pn(x) is the Taylor polynomial of order n, then the error term is f (n+1)(�)

(n+1)!
(x¡x0)n+1.

Likewise, if Pn(x) is the interpolating polynomial for f(x) at x0; x1; :::; xn, then

f(x)=Pn(x)+
f (n+1)(�)
(n+1)!

(x¡ x0)(x¡ x1)���(x¡ xn)

error term

for some � between the xi and x.

Chebyshev interpolation

In this section it will be convenient to use x1; :::; xn rather than x0; x1; :::; xn.

As reviewed above, if Pn¡1(x) is the interpolating polynomial for f(x) at x1; :::; xn, then

f(x)¡Pn¡1(x)=
f (n)(�)
n!

(x¡x1)���(x¡xn)

interpolation error

for some � between the xi and x.

Suppose we wish to minimize the maximal error on some interval [a; b]. After shifting and scaling,
we can normalize this interval to the interval [¡1; 1].
It therefore is natural to choose x1; :::; xn such that max

x2[¡1;1]
j(x¡x1)���(x¡xn)j is minimized.

Amazingly, in Theorem 97, we will be able to say exactly for which choice of xi this happens!

Example 95. For small n, choose x1;x2; :::;xn such that max
x2[¡1;1]

j(x¡x1)���(x¡xn)j is minimal.

Solution. In the cases below, we will appeal to symmetry and assume that the optimal nodes must be such that
x1=¡xn, x2=¡xn¡1, .... As such, the arguments only prove that our choices are optimal if that assumption
is correct. In hindsight, from our general proof in Theorem 97, this will prove to be correct.

� n=1: By symmetry, the optimal choice should be x1=0.

� n=2: By symmetry, x1=¡x2. Write c= x2 and let f(x)= (x+ c)(x¡ c)=x2¡ c2.
Since f 0(x) = 2x= 0 only if x= 0, it follows that maxx2[¡1;1] jf(x)j has to occur at x= 0 or at the
endpoints x=�1. The corresponding values are jf(0)j= c2, jf(�1)j=1¡ c2.
From a plot of m(c)=max(c2;1¡c2) it is clear that the minimum of m(c) is achieved when c2=1¡c2.
This latter equation has the unique positive solution c= 2

p

2
= cos

¡ �
4

�
.

Note that the xi are cos
¡ �
4

�
2

p
/2

; cos
�
3�

4

�
¡ 2
p

/2

� 0.7071.
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� n=3: By symmetry, x1=¡x3 and x2=0. Write c= x3 and let f(x)= (x+ c)x(x¡ c)= x(x2¡ c2).
Since f 0(x)=3x2¡ c2=0 only if x=� c

3
p , it follows thatmaxx2[¡1;1] jf(x)j has to occur at x=�

c

3
p

or at the endpoints x=�1. The corresponding values are
��������f� c

3
p

���������= jcj
3

p
�
2c2

3

�
=
2jcj3

3 3
p , jf(�1)j=1¡c2.

From a plot of m(c) = max
�
2jcj3

3 3
p ; 1 ¡ c2

�
it is clear that the minimum of m(c) is achieved when

2jcj3

3 3
p =1¡ c2. This latter equation has the unique positive solution c= 3

p

2
= cos

¡ �
6

�
.

Note that the xi are cos
¡ �
6

�
3

p
/2

; cos
�
3�

6

�
0

; cos
�
5�

6

�
¡ 3
p

/2

.

� n=4: The pattern continues and the xi turn out to be cos
¡ �
8

�
; cos

�
3�

8

�
; cos

�
5�

8

�
; cos

�
7�

8

�
.

Comment. We have the less familiar trig values cos
¡ �
8

�
=
1

2
2+ 2

pq
and cos

�
3�

8

�
=
1

2
2¡ 2

pq
.

Example 96. (bonus!) Suppose we are doing interpolation on the interval [¡1; 1] and we want
the endpoints to be interpolation nodes; that is, x1=¡1 and xn=1. Choose the remaining nodes
such that max

x2[¡1;1]
j(x¡x1)���(x¡xn)j is minimal.

Do this for n=1; 2; 3 to collect a bonus point.

An extra bonus point if you can figure out what happens for any n? (Hint: compare with the Chebyshev case.)

Theorem 97. (Chebyshev's theorem) For the Chebyshev nodes

xj= cos
�
(2j ¡ 1)
2n

�

�
; j=1; :::; n;

we have

max
x2[¡1;1]

j(x¡x1)���(x¡xn)j=
1

2n¡1
:

That value is the minimal value for any choice of roots x1; :::; xn.

The corresponding polynomials Tn(x) = 2n¡1(x¡ x1)���(x¡ xn) are known as the Chebyshev
polynomials of the first kind.
Note that these are scaled by 2n¡1 so that the maximum is 1.

Proof. We will show below that Tn(cos(�))= cos(n�), which implies that jTn(x)j6 1 for all x2 [¡1; 1].
Moreover, at x= cos

¡
k
�

n

�
for k=0; 1; :::; n the values of Tn(x) alternate between 1 and ¡1.

Write Pn(x)= (x¡x1)���(x¡xn). It follows that max
x2[¡1;1]

jPn(x)j= 1

2n¡1
as claimed.

Suppose that there is a polynomial Qn(x)= (x¡ r1)���(x¡ rn) for which max
x2[¡1;1]

jQn(x)j<
1

2n¡1
.

Note that d(x) :=Pn(x)¡Qn(x) has the following properties:

� d(x) is of degree at most n¡ 1 (because the xn terms cancel).

� At x= cos
¡
k
�

n

�
for k=0; 1; :::; n the values of d(x) alternate between + and ¡.

(Because Pn(x)=�
1

2n¡1
while jQn(x)j<

1

2n¡1
.)

� Hence, between these n+1 values, there must be n zeros. That is impossible because d(x) has degree
less than n.

This contradiction shows that no such polynomial Qn(x) can exist. �

Armin Straub
straub@southalabama.edu

57



The following is Theorem 89 combined with Chebyshev's Theorem 97.

Theorem 98. (interpolation error using Chebyshev nodes) If Pn¡1 is the interpolating
polynomial for f at n Chebyshev nodes, then the interpolation error can be bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6
1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j:

Fine print. As in Theorem 89, we need that f is n times continuously differentiable.
Comment. Theorem 98 guarantees convergence, as n!1, of the interpolating polynomials Pn to f provided
that the derivatives of f don't grow too fast. On the other hand, one can show that, for certain functions f ,
no sequence of interpolating polynomials will converge to f .

Advanced comment. Theorem 98 can be interpreted as showing that, for a given function f , the Chebyshev
interpolant Pn is a good approximation of f on the interval [¡1; 1]. However, that does not mean that it is the
best polynomial approximation of degree n (in the sense of minimizing the maximal error). One can show that
there exists a unique such best polynomial Bn. However, Bn is difficult to compute. On the other hand, the
Chebyshev interpolant Qn is close to best in the sense that

max
x2[¡;1;1]

jf(x)¡Qn(x)j6
�
4+

4

�2
log(n)

�
max

x2[¡;1;1]
jf(x)¡Bn(x)j:

Example 99. Suppose we approximate a function f(x) on the interval [¡1; 1] by a polynomial
interpolation P (x). Suppose we know that jf (n)(x)j6n for all x2 [¡1; 1].

(a) Give an upper bound for the maximal error if we use the interpolation nodes ¡1;¡1

3
;
1

3
;1.

(b) Give an upper bound for the maximal error if we use 4 Chebyshev nodes instead.

(c) How many Chebyshev nodes do we need to use in order to guarantee that the maximal
error is at most 10¡3?

Solution.

(a) This is the same problem as in the last part of Example 91.

Our bound for the error was max
x2[¡1;1]

jf(x)¡P (x)j6 1

6
max

x2[¡1;1]

��������(x2¡ 1)�x2¡ 1

9

���������= 1

6
� 16
81
�0.0329.

(b) By Theorem 97, max
x2[¡1;1]

j(x¡x1)���(x¡ xn)j= 1

2n¡1
for Chebyshev nodes. In our case, n=4.

Therefore, our bound for the error is jf(x)¡P (x)j6 1
6

1

24¡1
=

1
48
� 0.0208.

(c) By Theorem 98, using n Chebyshev nodes, the error is bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6 1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j6 1

2n¡1 (n¡ 1)! .

We thus need to choose n so that 2n¡1 (n¡ 1)!> 103.
Computing 2n¡1 (n ¡ 1)! for n= 1; 2; :::, we obtain 1; 2; 8; 48; 384; 3840. Thus, for n= 6 Chebyshev
nodes the maximal error is guaranteed to be less than 10¡3.
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Comment. Note that the bound for 4 Chebyshev nodes is better than the one for the same number of equally
spaced points. Indeed, for the Chebyshev nodes, such an error estimate is best possible. In the plots below, we
can see the difference between (x¡x1)���(x¡xn) in the case of equally spaced xi and Chebyshev nodes xi (in
dotted). The first plot shows the case n=4 and the difference is moderate. The difference becomes very visible
in the second plot which shows the case n = 8. We can see how, for the equally spaced nodes, we get large
(negative) values towards the endpoints of [¡1;1] while, for the Chebyshev nodes, there are no such wild swings.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.20

0.15

0.10

0.05

0.00

0.05

0.10

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.005

Example 100. Python Let us redo Example 94 but with Chebyshev nodes instead of equally
spaced interpolation nodes.

>>> def chebyshev_nodes(n):
return [cos((2*j+1)*pi/(2*n)) for j in range(n)]

>>> chebyshev_nodes(3)

[0.8660254037844387, 6.123233995736766e-17, -0.8660254037844387]

We observed in Example 94 that the maximal interpolation error for the Runge function f(x) =
1/(1+25x2) did not go down as we increased the number of (equally spaced) interpolation nodes.

>>> def f(x):
return 1/(1+25*x**2)

>>> [max_interpolation_error(f, -1, 1, chebyshev_nodes(n), 100) for n in range(2,18)]

[0.92338165562264884, 0.60057189596611948, 0.74778034684079508, 0.40195613012685899,
0.5534788672877784, 0.26410513077643449, 0.38946847488552683, 0.17006563147899745,
0.26712486571968486, 0.10902564197574982, 0.1809557278548104, 0.06902642915187851,
0.12185501126173093, 0.0460893689663045, 0.081815311151541836, 0.032580232210393967]

Unlike in Example 94, these values suggest that, by increasing the number of Chebyshev nodes,
the maximal interpolation error will go to zero.

For comparison with Example 94, below are the plots are for 10 and 12 interpolation nodes.

Comment. Note how we no longer have oscillations towards the endpoints of the interval. These plots also
reveal why (as we can see from the above list of maximal errors) an even number of Chebyshev nodes leads to a
relatively worse interpolation error compared to an odd number. (Namely, for an odd number of nodes, we have
a node at x=0, the peak of our function; while, for an even number of nodes, that peak is underestimated by
the interpolation.)
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Bonus material: Chebyshev polynomials

As introduced after Chebyshev's Theorem 97, the Chebyshev polynomials of the first kind are

Tn(x)= 2n¡1(x¡x1)���(x¡xn); xj= cos
�
(2j ¡ 1)
2n

�

�
:

These are scaled by 2n¡1 so that the maximum is 1. Indeed, Tn(1)= 1.

We can see in the following plot of Tn(x) for n 2 f1; 2; 3; 4g that the Chebyshev polynomials
alternate between the values �1. The goal of this section is to prove this and other properties.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50
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Review. (trig identities through Euler) By Euler's identity, ei�= cos(�)+ i sin(�). In other
words, cos(�)=Re(ei�) and sin(�)= Im(ei�) are �parts� of the exponential function.

All of the trig function identities can then be obtained from simpler identities of the exponential function.

For instance, the exponential function satisfies eA+B= eAeB. For the cosine, this relation translates into

cos(�+ �)=Re(ei�ei�)=Re(cos(�)+ i sin(�)(cos(�)+ i sin(�)))= cos(�)cos(�)¡ sin(�)sin(�):
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Theorem 101. The Chebyshev polynomials Tn(x) of the first kind satisfy:

(a) Tn(cos(�))= cos(n�)
Equivalently, Tn(x)= cos(n arccos(x)).

(b) Tn(x)= 2xTn¡1(x)¡Tn¡2(x)
This Fibonacci-like recursive relation together with T0(x)= 1 and T1(x)= x characterizes Tn(x).

Proof.

(a) It follows from trig identities (see the first part of the next example) that cos(n�) can be written as
a polynomial in cos(�). In other words, there is a (unique) polynomial pn(x) such that cos(n�) =
pn(cos(�)). We need to show that Tn(x)= pn(x). Since both are polynomials of degree n, this follows
if we can show that they agree at n+1 points.

By definition, for j 2f1; 2; :::; ng, Tn(x) has a root at xj= cos(�j) where �j=
(2j ¡ 1)
2n

�.

On the other hand, pn(xj)= p(cos(�j))= cos(n�j)= cos
��
j ¡ 1

2

�
�
�
=0.

Tn(x) and pn(x) therefore have the same n roots. It follows that they are the same if they have the
same leading coefficient. For Tn(x) it is clear from the definition Tn(x)=2n¡1(x¡x1)���(x¡xn) that
the leading coefficient is 2n¡1. That the same is true for pn(x) follows from the recursive relation for
pn(x) that we show in the second part.

(b) It follows from the trig identity cos(�+ �)=cos(�)cos(�)¡ sin(�)sin(�) (which we derived above) that

cos((n+1)�) = cos(n�+ �)= cos(n�)cos(�)¡ sin(n�)sin(�);
cos((n¡ 1)�) = cos(n�¡ �)= cos(n�)cos(�)+ sin(n�)sin(�);

where we used that sin(¡�) =¡sin(�) for the last term. Adding these two, and then writing Tn(x) =
cos(n�) with �= arccos(x), we obtain

cos((n+1)�)

Tn+1(x)

+ cos((n¡ 1)�)
Tn¡1(x)

=2cos(n�)
Tn(x)

cos(�)
x

;

which is the claimed recursive relation. �

Example 102. Determine the first few Chebyshev polynomials Tn(x).
Solution. (using cosines) We use Tn(x) = cos(n�) with x = cos(�) combined with Euler's identity ei� =
cos(�)+ i sin(�) as well as the trig identity cos(�)2+ sin(�)2=1.

� e2i�=(ei�)2=(cos(�)+ i sin(�))2 has real part cos(2�)= cos(�)2¡ sin(�)2=2cos(�)2¡ 1.
Hence T2(x)= 2x2¡ 1.

� e3i�=(cos(�)+ i sin(�))3 has real part cos(3�)= cos(�)3¡ 3cos(�)sin(�)2=4cos(�)3¡ 3cos(�).
Hence T3(x)= 4x3¡ 3x.

Solution. (using recursion) Starting with T0(x)= 1 and T1(x)= x, we apply Tn(x)= 2xTn¡1(x)¡Tn¡2(x)
to compute T2(x); T3(x); :::

� T2(x)= 2xT1(x)¡T0(x)= 2x2¡ 1

� T3(x)= 2xT2(x)¡T1(x)= 2x(2x2¡ 1)¡x=4x3¡ 3x

� T4(x)= 2xT3(x)¡T2(x)= 2x(4x3¡ 3x)¡ (2x2¡ 1)= 8x4¡ 8x2+1

� . . .
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Notes for Lecture 15 Mon, 10/23/2023

Example 103. Suppose we approximate sin(x) on [¡1; 1] by a polynomial interpolation.

(a) Give an upper bound for the maximal error if we use 5 Chebyshev nodes.

(b) How many Chebyshev nodes do we need to use in order to guarantee that the maximal
error is at most 10¡16?

Solution. In the case f(x)= sin(x) we know that jf (n)(x)j6 1 for all x2 [¡1; 1] and all n.
Therefore, by Theorem 98, using n Chebyshev nodes for the interpolation Pn¡1(x), the error is bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6 1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j6 1

2n¡1n!
.

(a) With n=5 nodes, this upper bound becomes 1

24 � 5! =
1

16 � 120 =
1

1920
� 0.00052.

(b) We need to choose n so that 1

2n¡1n!
6 10¡16 or, equivalently, 2n¡1 n!> 1016. We compute 2n¡1 n!

for n= 1; 2; ::: and find that this first happens when n= 15 (see the next Python example). Thus, for
n= 15 Chebyshev nodes the maximal error is guaranteed to be no more than 10¡16.

Comment. Recall that double precision floats have a precision of slightly less than 16 decimal digits. Thus we
could, in theory, implement an accurate sin(x) function by using a degree 14 polynomial (or even lower degree
if we take symmetry into account).

Advanced comment. Note that some care is required to translate this result into practice. For instance, if we
proceed as in Example 93 then the resulting maximal error using 15 Chebyshev nodes turns out to be about
4.7 � 10¡11, which is considerably larger than 10¡16 (even if we take into account that we are limited by using
double precision floats). The cause for this is that the function interpolate.lagrange does not compute the
interpolating polynomial accurately to full precision. Indeed, in the documentation for that function, we find the
following statement: Warning: This implementation is numerically unstable. Do not expect to be able to use
more than about 20 points even if they are chosen optimally.

Example 104. Python A function for computing n! is available in the Python math library (as
well as in numpy and scipy). However, here is a possible quick implementation from scratch:

>>> def factorial(n):
f = 1
for k in range(1,n+1):

f = f*k
return f

>>> factorial(3)

6

For the computation in the previous example, we now increase n until 2n¡1n!> 1016.
>>> n = 1

>>> while 2**(n-1) * factorial(n) < 10**16:
n = n+1

>>> n

15

>>> 2**(n-1) * factorial(n)

21424936845312000

>>> 2.**(n-1) * factorial(n)

2.1424936845312e+16
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(Cubic) splines: piecewise polynomial interpolation

If, given data points (x0; y0); :::; (xn; yn) (also called knots) with x0<x1<:::<xn, we connect
them via straight lines, then we obtain what is called a linear spline. This linear spline interpolates
the given points but it is not a polynomial; instead it is a piecewise polynomial (namely, in this
case, it is a line on each segment [xi; xi+1]).
A problematic feature of linear splines is their lack of smoothness. Between each linear piece, we usually have a
sharp corner at which the spline is not differentiable.
Cn smooth. We say that a function is Cn smooth if its nth derivative exists and is continuous.
For instance, linear splines are C0 (continuous) but not C1 (unless the spline is a single line).

Of particular practical importance are cubic splines which are piecewise polynomials where each
piece is a polynomial of degree 3 (or less).

On each segment [xi; xi+1], we therefore have 4 degrees of freedom (coming from the 4 coefficients of a cubic
polynomial). We need 2 of these to interpolate at the two endpoints. This leaves us with 4 ¡ 2 = 2 degrees
of freedom which we can use to achieve smoothness. This allows us to demand that the first and the second
derivative agree with the neighboring pieces. Thus the resulting spline will be C2 smooth.

A cubic spline S(x) through (x0; y0); :::; (xn; yn) with x0<x1< ::: < xn is piecewise defined
by n cubic polynomials S1(x); :::; Sn(x) such that S(x)=Si(x) for x2 [xi¡1; xi]. Moreover:

� S(x) interpolates the given points.

This means that Si(xi¡1)= yi¡1 and Si(xi)= yi for i2f1; :::; ng. (2n equations)

� S(x) is C2 smooth (i.e. it has a continuous second derivative).

This means that Si
0(xi)=Si+1

0 (xi) and Si
00(xi)=Si+1

00 (xi) for i2f1; :::; n¡ 1g. (2n¡ 2 equations)

Note that there are 4n degrees of freedom for such a spline S(x), while we only have 2n +
(2n ¡ 2) = 4n ¡ 2 equations. To define a unique spline, we therefore need to impose 2 more
constraints. These are usually chosen as boundary conditions.

The following are common choices for the boundary conditions of cubic splines:

� natural: S100(x0)=Sn
00(xn)= 0

The resulting splines are simply called natural cubic splines.

� not-a-knot: S1000(x1)=S2
000(x1) and Sn000(xn¡1)=Sn¡1

000 (xn¡1)

� periodic: S10(x0)=Sn
0 (xn) and S100(x0)=Sn

00(xn) (only makes sense if y0= yn)

There are other common choices such clamped cubic splines for which the first derivatives at the endpoints
are being set (�clamped�) to user-specified values.

Comment. The name �natural� comes from the fact that the resulting spline is what one gets if one pins thin
(idealized) elastic strips in the position of the given knots.
Comment. The �not-a-knot� condition has the consequence that S1 = S2 and Sn = Sn¡1 (because cubic
polynomials must be equal if they agree up to the third derivative at a point). Hence x1 and xn¡1 are no longer
�knots� between separate polynomials.
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As illustrated in the next example, we can compute splines (with 2 boundary conditions) by spelling
out the 4n defining equations. We can then solve the resulting linear equations using linear algebra.
There are, of course, various clever observations that make this approach more efficient. However,
since we have other sights to see on our journey, we will not get into these aspects.

Review. By Taylor's theorem (Theorem 52), applied to a function f(x) around x= x0, we have

f(x)= f(x0)+ f 0(x0)(x¡x0)+ ���+
f (n)(x0)

n!
(x¡ x0)n

nth Taylor polynomial

+
f (n+1)(�)
(n+1)!

(x¡ x0)n+1

error

:

If f(x) is a polynomial of degree n, then f (n+1)(x)= 0 so that f(x) is equal to its nth Taylor polynomial. In
particular, if f(x) is a cubic polynomial then, for any x0,

f(x)= a(x¡x0)3+ b(x¡ x0)2+ c(x¡ x0)+ d;

with a= 1

6
f (3)(x0), b=

1

2
f (2)(x0), c= f 0(x0) and d= f(x0).

Example 105. Determine the natural cubic spline through (¡1; 2), (1; 0), (2; 5).
Solution. Let us write the spline as S(x)=

�
S1(x); if x2 [¡1; 1];
S2(x); if x2 [1; 2]:

To simplify our life, we expand both Si around x=1 (the middle knot).

Si(x)= ai(x¡ 1)3+ bi(x¡ 1)2+ ci(x¡ 1)+ di:

� As noted in the review above, di=Si(1), ci=Si
0(1) and bi=

1

2
Si
00(1). Because S(x) is C2 smooth, we

have b1= b2, c1= c2 and d1= d2. We simply write b, c and d for these values in the sequel.

� d=0 because S1(1)=S2(1)= 0.

� S(x) further interpolates the other two points, (¡1;2) and (2;5), resulting in the following two equations:

S1(¡1) = ¡8a1+4b¡ 2c =2

S2(2) = a2+ b+ c =5

� The natural boundary conditions provide two more equations: (Note that Si00(x)= 6ai(x¡ 1)+ 2bi.)

S1
00(¡1) = ¡12a1+2b=0

S2
00(2) = 6a2+2b=0

We use these last two equations to replace a1=
1

6
b and a2=¡1

3
b in the other two equations in terms of b:

¡8 � 1
6
b+4b¡ 2c =

8
3
b¡ 2c=2

¡1
3
b+ b+ c =

2
3
b+ c=5

Solving these two equations in two unknowns, we find b=3 and c=3.

Consequently, a1=
1

6
b=

1

2
and a2=¡

1

3
b=¡1.

Hence, the desired natural cubic spline is

S(x)= 3(x¡ 1)+ 3(x¡ 1)2+(x¡ 1)3
(

1

2
; if x2 [¡1; 1];
¡1; if x2 [1; 2]:
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Notes for Lecture 16 Wed, 10/25/2023

Example 106. Under which conditions is

S(x)=
�
S1(x); if x2 [0; a];
S2(x); if x2 [a; b];

is a cubic spline? A natural cubic spline?
Solution. S(x) is a cubic spline if S1(x) and S2(x) are cubic polynomials such that

S1(a)=S2(a); S1
0(a)=S2

0(a); S1
00(a)=S2

00(a):

S(x) is a natural cubic spline if, in addition, S1
00(0)= 0 and S2

00(b)= 0.
Comment. Together with the three conditions coming from prescribing the values S(0), S(a) and S(b), these
are 8 conditions in order for S(x) to be a natural cubic spline. 8 equations are just the right number to uniquely
determine the underlying 2 � 4=8 unknowns.

Example 107. The following function S(x) is a cubic spline.

S(x)=¡1¡ 2
9
(a¡ 5)x¡ 1

3
(2a¡ 1)x2+ 1

36
x3

�
(¡10a¡ 13); if x2 [¡2; 0];
8(4a+7); if x2 [0; 1]:

(a) Spell out the conditions we need to check to see that this is a cubic spline.

(b) What are the underlying data points?

(c) Is there a choice of a such that S(x) is a natural cubic spline?

Solution.

(a) Write S1(x) for S(x) on [¡2; 0] and S2(x) for S(x) on [0; 1]. Then, as in the previous example, the
conditions for S(x) to be a cubic spline are

S1(0)=S2(0); S1
0(0)=S2

0(0); S1
00(0)=S2

00(0):

These conditions are visibly satisfied since the formulas for S1(x) and S2(x) agree up to a multiple of x3.

(b) The knots of the spline are ¡2; 0; 1. We compute S(¡2)=1, S(0)=¡1, S(1)= 2.
Hence the data points are (¡2; 1), (0;¡1), (1; 2).

(c) In order for S(x) to be a natural spline, we need S 00(¡2)=0 as well as S 00(1)=0. Using

S 00(x)=¡2
3
(2a¡ 1)+ 1

6
x

�
(¡10a¡ 13); if x2 [¡2; 0];
8(4a+7); if x2 [0; 1];

we have S 00(¡2)=¡2

3
(2a¡1)¡ 1

3
(¡10a¡13)=2a+5 and S 00(1)=¡2

3
(2a¡1)+ 4

3
(4a+7)=4a+10.

Both of these are 0 if and only if a=¡5

2
. Therefore, S(x) is a natural cubic spline if a=¡5

2
.

Comment. Can you explain why the two segments of the spline only differ in the cubic term?
[Hint: Note that 0 is a knot and look again at the first part.]
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Example 108. Python Let us construct cubic splines using Python with scipy.

>>> from numpy import linspace
from scipy import interpolate

Comment. Many basic functions like linspace are provided by both numpy and scipy.

We start by defining the data points that we wish to interpolate.

>>> xpoints = [1, 2, 4, 5, 7]

>>> ypoints = [2, 1, 4, 3, 2]

We can then construct the cubic spline with natural boundary conditions as follows.

>>> spline = interpolate.CubicSpline(xpoints, ypoints, bc_type='natural')

Comment. Other standard choices for the boundary conditions include 'not-a-knot' (the default) as well as
'clamped' and 'periodic' (this one requires the first and last point to have the same y-coordinates).
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

The resulting natural cubic spline is piecewise defined by a collection of cubic polynomials. We
can plot it as we did in Example 86 (this time we also include a legend).

>>> import matplotlib.pyplot as plt

>>> xplot = linspace(1, 7, 100)

>>> plt.plot(xplot, spline(xplot), '-', label='spline (natural)')

>>> plt.plot(xpoints, ypoints, 'o', label='knots')

>>> plt.legend()

>>> plt.show()

The resulting plot is a simpler version of the following one where we also included two other cubic
splines as well as the polynomial interpolant:

Homework. Can you reproduce this plot?

1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

3.0

3.5

4.0 spline (natural)
spline (not-a-knot)
spline (periodic)
polynomial interpolant
knots

Can you identify (some of) the splines without the labels? Try other knots and plot the splines!

For instance. The periodic spline is easily identified here because of the matching derivatives at the endpoints.
The natural spline is the one that is most like a clothesline pinned to the knots.
The not-a-knot spline is closer to polynomial interpolation.
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If desired, we can access the piecewise polynomials as follows:

>>> spline.c

[[ 6.37096774e-01 -6.49193548e-01 8.54838710e-01 -9.67741935e-02]
[ 2.22044605e-16 1.91129032e+00 -1.98387097e+00 5.80645161e-01]
[-1.63709677e+00 2.74193548e-01 1.29032258e-01 -1.27419355e+00]
[ 2.00000000e+00 1.00000000e+00 4.00000000e+00 3.00000000e+00]]

>>>

For instance, the first column refers to 2 ¡ 1.637(x ¡ 1) + 0.637(x ¡ 1)3 (the cubic used on
[1; 2], the first interval) while the fourth column encodes 3 ¡ 1.274(x ¡ 5) + 0.581(x ¡ 5)2 ¡
0.097(x¡ 5)3 (the cubic used on [5; 7], the last interval).

Comment. The exact cubics are 2¡ 203
124

(x¡ 1)+ 79
124

(x¡ 1)3 and 3¡ 79
62
(x¡ 5)+ 18

31
(x¡ 5)2¡ 3

31
(x¡ 5)3.

Note how, for the first one, S1(x), we can immediately see that S1
00(1)=0. Because we created a natural cubic

spline, we also have S4
00(7)= 0. (Check it from the above exact formula!)

Example 109. In the case of four nodes/knots, how is the polynomial interpolant related to the
cubic splines?
Solution. Note that the polynomial interpolant for four nodes is a cubic polynomial.
On the other hand, each cubic spline consists of three cubic polynomials S1; S2; S3. In the case of the not-a-
knot cubic spline, we have S1=S2 as well as S3=S2, which implies that all three are equal so that the not-a-
knot cubic spline is a single cubic polynomial (interpolating the four given points).
Therefore, the polynomial interpolant must equal the not-a-knot cubic spline in this case.
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Notes for Lecture 17 Mon, 10/30/2023

Working with functions: differentiation + integration

Numerical differentiation

We know from Calculus that f 0(x)= lim
h!0

f(x+h)¡ f(x)
h

.

To numerically approximate f 0(x) we could use f 0(x)� 1

h
[f(x+h)¡ f(x)] for small h.

In this section, we analyze this and other ways of numerically differentiating a function.
Application. These approximations are crucial for developing tools to numerically solve (partial) differential
equations by discretizing them.

Review. We can express Taylor's theorem (Theorem 52) in the following manner:

f(x+h)= f(x)+ f 0(x)h+ 1
2
f 00(x)h2+ :::+ 1

n!
f (n)(x)hn

Taylor polynomial

+ 1
(n+1)!

f (n+1)(�)hn+1

error

This form is particularly convenient for the kind of error analysis that we are doing here.
Important notation. When the exact form of the error is not so important, we simply write O(hn+1) and say
that the error is of order n+1.

Definition 110. We write e(h) =O(hn) if there is a constant C such that je(h)j6Chn for all
small enough h.
For our purposes, e(h) is usually an error term and this notation allows us to talk about that error without being
more precise than necessary.
If e(h) is the error, then we often say that an approximation is of order n if e(h)=O(hn).
Caution. This notion of order is different from the order of convergence that we discussed in the context of
fixed-point iteration and Newton's method.

Example 111. Determine the order of the approximation f 0(x)� 1

h
[f(x+h)¡ f(x)].

Comment. This approximation of the derivative is called a (first) forward difference for f 0(x).

Likewise, f 0(x)� 1

h
[f(x)¡ f(x¡h)] is a (first) backward difference for f 0(x).

Solution. By Taylor's theorem, f(x+h)= f(x)+hf 0(x)+
h2

2
f 00(x)+

h3

6
f 000(x)+O(h4). It follows that

1
h
[f(x+h)¡ f(x)] = f 0(x)+ h

2
f 00(x)+O(h2) = f 0(x)+ O(h) :

Hence, the error is of order 1.

Comment. The presence of the term h

2
f 00(x) tells us that the order is exactly 1 unless f 00(x)= 0 (that is, the

order cannot generally be improved to � for some � < 1).
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Example 112. Determine the order of the approximation f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)].

Comment. This approximation of the derivative is called a (first) central difference for f 0(x).

Solution. By Taylor's theorem (Theorem 52),

f(x+h) = f(x)+hf 0(x)+
h2

2
f 00(x)+

h3

6
f 000(x)+

h4

24
f (4)(x)+O(h5); (2)

f(x¡h) = f(x)¡hf 0(x)+ h2

2
f 00(x)¡ h3

6
f 000(x)+

h4

24
f (4)(x)+O(h5):

(Note that the second formula just has h replaced with ¡h.) Subtracting the second from the first, we obtain

1
2h
[f(x+h)¡ f(x¡h)]= f 0(x)+ h2

6
f 000(x)+O(h3) = f 0(x)+ O(h2) :

Hence, the error is of order 2.

Example 113. Use both forward and central differences to approximate f 0(x) for f(x)=x2.

Solution. We get 1

h
[f(x+h)¡ f(x)] = 2x+h and 1

2h
[f(x+h)¡ f(x¡h)] = 2x.

Comment. In the forward difference case, the error is of order 1 (also note that h

2
f 00(x) = h). In the central

difference case, we find that we get f 0(x) without error. In hindsight, with the error formulas in mind, this is
not a surprise and reflects the fact that f 000(x)= 0.

Example 114. Use both forward and central differences to approximate f 0(2) for f(x)= 1/x.
Solution. (Since f 0(x)=¡1/x2, the exact value is f 0(2)=¡1/4.) In each case, we use h= 1

10 and h= 1

20 .

� h=
1

10
: 1

h
[f(x+h)¡ f(x)] =¡ 5

21
�¡0.2381, error 0.0119

h=
1

20
: 1

h
[f(x+h)¡ f(x)] =¡10

41
�¡0.2439, error 0.0061 (reduced by about 1

2
)

� h=
1

10
: 1

2h
[f(x+h)¡ f(x¡h)]=¡100

399
�¡0.25063, error ¡0.00063

h=
1

20
: 1

2h
[f(x+h)¡ f(x¡h)]=¡ 400

1599
�¡0.25016, error ¡0.00016 (reduced by about 1

4
)

Important comment. The forward difference has an error of order 1. In other words, for small h, it should
behave like Ch. In particular, if we replace h by h/2, then the error should be about 1/2 (as we saw above).

On the other hand, the central difference has an error of order 2 and so should behave like Ch2. In particular,
if we replace h by h/2, then the error should be about 1/22=1/4 (and, again, this is what we saw above).

Example 115. Find a central difference for f 00(x) and determine the order of the error.

Solution. Adding the two expansions in (2) to kill the f 0(x) terms, and subtracting 2f(x), we find that

1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)] = f 00(x)+ h2

12
f (4)(x)+O(h3) = f 00(x)+ O(h2) :

The error is of order 2.

Alternatively. If we iterate the approximation f 0(x)� 1

2h
[f(x+ h)¡ f(x¡ h)] (in the second step, we apply

it with x replaced by x�h), we obtain

f 00(x)� 1
2h
[f 0(x+h)¡ f 0(x¡h)]� 1

4h2
[f(x+2h)¡ 2f(x)+ f(x¡ 2h)];

which is the same as what we found above, just with h replaced by 2h.
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Example 116. Obtain approximations for f 0(x) and f 00(x) using the values f(x), f(x + h),
f(x+ 2h) as follows: determine the polynomial interpolation corresponding to these values and
then use its derivatives to approximate those of f . In each case, determine the order of the
approximation and the leading term of the error.
Solution. We first compute the polynomial p(t) that interpolates the three points (x; f(x)), (x+h; f(x+h)),
(x+2h; f(x+2h)) using Newton's divided differences:

f [�] f [�; �] f [�; �; �]
x f(x)

f(x+h)¡ f(x)
h

:=c1

x+h f(x+h)
f(x+2h)¡ 2f(x+h)+ f(x)

2h2
:=c2

f(x+2h)¡ f(x+h)
h

x+2h f(x+2h)

Hence, reading the coefficients from the top edge of the triangle, the interpolating polynomial is

p(t)= f(x)+ c1(t¡ x)+ c2(t¡ x)(t¡x¡h):

� (approximating f 0(x)) Since p0(t)= c1+ c2(2t¡ 2x¡h), we have

p0(x) = c1¡hc2=
f(x+h)¡ f(x)

h
¡ f(x+2h)¡ 2f(x+h)+ f(x)

2h

=
¡f(x+2h)+ 4f(x+h)¡ 3f(x)

2h
:

This is our approximation for f 0(x). To determine the order and the error, we combine

f(x+h) = f(x)+ f 0(x)h+
1
2
f 00(x)h2+

f 000(x)
6

h3+O(h4);

f(x+2h) = f(x)+ 2f 0(x)h+2f 00(x)h2+
4f 000(x)

3
h3+O(h4)

(note that the latter is just the former with h replaced by 2h) to find

¡f(x+2h)+ 4f(x+h)¡ 3f(x)= 2f 0(x)h¡ 2f 000(x)
3

h3+O(h4):

Hence, dividing by 2h, we conclude that

¡f(x+2h)+ 4f(x+h)¡ 3f(x)
2h

= f 0(x)¡ f 000(x)
3

h2+O(h3):

Consequently, the approximation is of order 2.

� (approximating f 00(x)) Since p00(t)= 2c2, we have p00(x)= 2c2=
f(x+2h)¡ 2f(x+h)+ f(x)

h2
.

This is our approximation for f 00(x). To determine the order and the error, we proceed as before to find

f(x+2h)¡ 2f(x+h)+ f(x)= f 00(x)h2+ f 000(x)h3+O(h4):

Hence, dividing by h2, we conclude that

f(x+2h)¡ 2f(x+h)+ f(x)

h2
= f 00(x)+ f 000(x)h+O(h2):

Consequently, the approximation is of order 1.

Comment. Alternatively, can you derive these approximations by combining f(x) with the Taylor expansions of
f(x+h) and f(x+2h)? As a third way of producing such approximations, we will soon see that the present order
2 approximation of f 0(x) can be obtained by applying Richardson extrapolation to f 0(x)� 1

h
[f(x+h)¡ f(x)].
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Example 117. (homework) Obtain approximations for f 0(x) and f 00(x) using the values f(x¡
2h), f(x), f(x+ 3h) as follows: determine the polynomial interpolation corresponding to these
values and then use its derivatives to approximate those of f . In each case, determine the order
of the approximation and the leading term of the error.
Solution. We first compute the polynomial p(t) that interpolates the three points (x¡2h; f(x¡2h)), (x; f(x)),
(x+3h; f(x+3h)) using Newton's divided differences:

f [�] f [�; �] f [�; �; �]
x¡ 2h f(x¡ 2h)

f(x)¡ f(x¡ 2h)
2h

:=c1

x f(x)
2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)

30h2
:=c2

f(x+3h)¡ f(x)
3h

x+3h f(x+3h)

Hence, reading the coefficients from the top edge of the triangle, the interpolating polynomial is

p(t)= f(x¡ 2h)+ c1(t¡x+2h)+ c2(t¡x+2h)(t¡x):

� (approximating f 0(x)) Since p0(t)= c1+ c2(2t¡ 2x+2h), we have

p0(x) = c1+2hc2=
f(x)¡ f(x¡ 2h)

2h
+
2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)

15h

=
4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)

30h
:

This is our approximation for f 0(x). To determine the order and the error, we combine

f(x+h) = f(x)+ f 0(x)h+
1
2
f 00(x)h2+

f 000(x)
6

h3+O(h4);

f(x¡ 2h) = f(x)¡ 2f 0(x)h+2f 00(x)h2¡ 4f 000(x)
3

h3+O(h4);

f(x+3h) = f(x)+ 3f 0(x)h+
9
2
f 00(x)h2+

9f 000(x)
2

h3+O(h4)

to find

4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)= 30f 0(x)h+ 30f 000(x)h3+O(h4):

Hence, dividing by 30h, we conclude that

4f(x+3h)+ 5f(x)¡ 9f(x¡ 2h)
30h

= f 0(x)+ f 000(x)h2+O(h3):

Consequently, the approximation is of order 2.

� (approximating f 00(x)) Since p00(t)=2c2, we have p00(x)=2c2=
2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)

15h2
.

This is our approximation for f 00(x). To determine the order and the error, we proceed as before to find

2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)= 15f 00(x)h2+5f 000(x)h3+O(h4):

Hence, dividing by 15h2, we conclude that

2f(x+3h)¡ 5f(x)+ 3f(x¡ 2h)
15h2

= f 00(x)+
1
3
f 000(x)h+O(h2):

Consequently, the approximation is of order 1.
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Example 118. Python Let us see how the forward and central difference compare in practice.

>>> def forward_difference(f, x, h):
return (f(x+h)-f(x))/h

>>> def central_difference(f, x, h):
return (f(x+h)-f(x-h))/(2*h)

We apply these to f(x)=2x at x=1. In that case, the exact derivative is f 0(1)=2ln(2)�1.386.

>>> def f(x):
return 2**x

>>> [forward_difference(f, 1, 10**-n) for n in range(5)]

[2.0, 1.4354692507258626, 1.3911100113437769, 1.3867749251610384, 1.3863424075299946]

>>> [central_difference(f, 1, 10**-n) for n in range(5)]

[1.5, 1.3874047099948572, 1.3863054619682957, 1.3862944721280135, 1.3862943622289237]

It is probably easier to see what happens to the error if we subtract the true value from these
approximations:

>>> from math import log

>>> [forward_difference(f, 1, 10**-n) - 2*log(2) for n in range(12)]

[0.6137056388801094, 0.04917488960597205, 0.004815650223886303, 0.00048056404114782403,
4.80464101040301e-05, 4.804564444071957e-06, 4.80467807983942e-07, 4.703673917028084e-
08, 7.068710283775204e-09, 2.7352223619381277e-07, 1.161700655893938e-06,
1.8925269049896443e-05]

>>> [central_difference(f, 1, 10**-n) - 2*log(2) for n in range(12)]

[0.11370563888010943, 0.001110348874966638, 1.1100848405165564e-05,
1.1100812291608975e-07, 1.1090330875873633e-09, 1.879385536085465e-11,
7.43052286367174e-11, -7.028508886008922e-10, 7.068710283775204e-09,
1.6249993373129712e-07, 1.161700655893938e-06, 7.823038803644877e-06]

For the forward difference, we can see how the error decreases roughly by 1 / 10 initially, as
expected. Likewise, for the central difference, the error decreases roughly by 1 / 102 (order 2)
initially. However, in both cases, the errors end up increasing after a while before getting close to
machine precision. We discuss this in the next section.
Note how, for the forward difference, our best approximation has error 7.07�10¡9 while, for the central difference,
our best approximation has error 1.88 � 10¡11. While the latter is an improvement, either is worryingly large.
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Notes for Lecture 18 Wed, 11/1/2023

The errors in numerical differentiation

In practice, we always get two kinds of errors: the theoretical error as well as a rounding error
(due to the fact that we have to round all involved quantities to, say, double precision). In the
past, we have been able to mostly ignore the rounding error. However, we cannot afford to do
so in the case of numerical differentiation. The reason for the trouble is that our finite difference
approximations always subtract nearly equal quantities (that's in the nature of differentiation!)
which can lead to a devastating loss of precision.
Comment. The theoretical error is often also called truncation error. Here, truncation is meant in the sense
of, for instance, having a function f(x) and truncating its Taylor series to get an approximation of f(x).

Example 119. Analyze the overall error in using the approximation f 0(x)� 1

h
[f(x+h)¡ f(x)].

Solution. As we worked out in Example 111, the theoretical error is 1

h
[f(x+h)¡ f(x)] = f 0(x)+

h

2
f 00(�).

In practice, all quantities including f(x+h) and f(x) are slightly rounded and only accurate to within some "
(the machine precision). In the sequel, we assume double precision, in which case "� 2¡52� 2.2 � 10¡16. Our
approximation therefore is ("1 and "2 are the rounding errors for f(x+h) and f(x) respectively) roughly:

1
h
[(f(x+h)+ "1)¡ (f(x)+ "2)] =

1
h
[f(x)¡ f(x¡h)]+ "1¡ "2

h

= f 0(x)+
1
2
f 00(�)h

theoretical error

+
"1¡ "2
h

rounding error

Writing M =
1

2
jf 00(�)j (note that M � 1

2
jf 00(x)j if h is small) and observing that

������"1¡ "2
h

������6 2"

h
, we see that

the overall error is bounded by

E(h)=Mh+
2"
h
:

Plot the function E(h) to see that this bound becomes bad as h gets too small (that's because of the rounding
error 2"/h). In particular, we can see that there will be a �best� choice for h which minimizes this bound for
the error. To find this best value h?, we compute E 0(h)=M ¡ 2"

h2
=0 and solve for h. We find

h�=
2"
M

r
�M¡1/2 � 2.1 � 10¡8:

The corresponding bound for the error is E(h�)�Mh�+
2"

h�
�M1/2 � 4.2 � 10¡8.

Comment. Note that our estimates match the values we observed in Example 118 fairly well. In that example,
we had f(x)=2x so that f 00(x)= (ln2)2 2x and, therefore, M =

1

2
jf 00(�)j� 1

2
jf 00(1)j=(ln2)2 . In particular,

M1/2� ln2� 0.6931 and E(h�)�M1/2 � 4.2 � 10¡8� 2.9 � 10¡8.
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Example 120. Analyze the overall error in approximating f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)].

Solution. The theoretical error is 1

2h
[f(x+h)¡ f(x¡h)] = f 0(x)+

h2

6
f 000(x)+O(h3) (see Example 112).

In practice, proceeding as in the previous example, our approximation is roughly:

1
2h
[(f(x+h)+ "1)¡ (f(x¡h)+ "2)] =

1
2h
[f(x+h)¡ f(x¡h)] + "1¡ "2

2h

= f 0(x)+
1
6
f 000(�)h2

theoretical error

+
"1¡ "2
2h

rounding error

Note that
������"1¡ "2

2h

������6 "

h
. Writing M =

1

6
jf 000(�)j, the overall error is bounded by

E(h)=Mh2+
"
h
:

Again, plotting the function E(h) we see that this bound becomes bad as h gets too small and that there is a
�best� value h� which minimizes this bound for the error. We compute E 0(h)= 2Mh¡ "

h2
=0 and solve for h.

We find

h�=
"
2M

3

r
�M¡1/3 � 4.8 � 10¡6:

The corresponding bound for the error is E(h�)�M (h�)2+
"

h�
�M1/3 � 6.9 � 10¡11.

Comment. Again, our estimates match the values we observed in Example 118 rather well.

Richardson extrapolation

Suppose that A(h) is an approximation of a quantity A� of order n. Our goal is to construct an
approximation of A� of higher order (by combining approximations A(h) for different h).
If A(h) approximates A� to order n, then we often have A(h) =A�+Chn+O(hn+1) for some constant C.
This is true, for instance, for all of our numerical differentiation examples.
In that case, we have A(2h)=A�+C(2h)n+O(hn+1) as well as 2nA(h)= 2nA�+C(2h)n+O(hn+1).

Thus the difference is 2nA(h)¡A(2h)= (2n¡ 1)A�+O(hn+1).
Dividing both sides by 2n¡ 1, we therefore get an approximation of order higher than n.

(Richardson extrapolation) Starting with an approximation A(h) of a quantity A� of order n,
its Richardson extrapolation is the approximation

R(h) := 2nA(h)¡A(2h)
2n¡ 1 :

As we showed above, it typically is an approximation of higher order.

More generally, we get a Richardson extrapolation R�(h)=
�nA(h)¡A(�h)

�n¡ 1 for any choice of �>0 (the choice
�=2 is common but not mathematically special).

Comment. Note that, based on the values at h and 2h, we are trying to get our hands on A� which is the value
at 0. Because 0 is outside of the interval [h; 2h], this is an extrapolation.
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Example 121. Suppose that A
�
1

2

�
= 3

8
and A

�
1

3

�
= 5

12 are approximations of order 3 of some

quantity A�. What is the approximation we obtain from using Richardson extrapolation?

Solution. Since A(h) is an approximation of order 3, we expect A(h)�A�+Ch3 for some constant C.

Correspondingly, A
�
1

2

�
�A�+ 1

8
C and A

�
1

3

�
�A�+ 1

27
C.

Hence, 27A
�
1

3

�
¡ 8A

�
1

2

�
� (27¡ 8)A�= 19A�. To get an approximation of A�, we need to divide by 19.

The Richardson extrapolation is 27
19
A
�
1

3

�
¡ 8

19
A
�
1

2

�
=

27
19

5

12
¡ 8

19
3

8
=

33
76
.

Comment. Note that we did is equivalent to using the formula R�(h)=
�nA(h)¡A(�h)

�n¡ 1 with h= 1

3
and �= 3

2
.

Comment. The numbers above are not random. Instead, A(h) = 1

2
¡ h

4
which is an order 3 approximation of

f(0)=
1

2
for f(x)= 1

1+ ex
=
1

2
¡ x

4
+

x3

48
+O(x5). Indeed, 33

76
�0.434 is slightly better than A

�
1

2

�
and A

�
1

3

�
.

Example 122. Apply Richardson extrapolation to f 0(x)� 1

h
[f(x+h)¡ f(x)].

Solution. We have seen in Example 111 that the approximation A(h)= 1

h
[f(x+h)¡ f(x)] is of order 1. Hence,

2A(h)¡A(2h)
2¡ 1 =

2
h
[f(x+h)¡ f(x)]¡ 1

2h
[f(x+2h)¡ f(x)]

=
1
2h
[¡f(x+2h)+ 4f(x+h)¡ 3f(x)]

is an approximation of higher order (we expect it to be of order 2).
Indeed, this approximation of f 0(x) is the same as what we obtained in Example 116 when applying polynomial
interpolation to f(x), f(x+h), f(x+2h). As observed there, the error is ¡1

3
f 000(x)h2+O(h3) showing that

this is indeed an approximation of order 2.

Example 123. Apply Richardson extrapolation to f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)].

Solution. We have seen in Example 112 that the approximation A(h)= 1

2h
[f(x+h)¡ f(x¡h)] is of order 2.

Hence,

22A(h)¡A(2h)
22¡ 1 =

2
3h
[f(x+h)¡ f(x¡h)]¡ 1

12h
[f(x+2h)¡ f(x¡ 2h)]

=
1

12h
[¡f(x+2h)+ 8f(x+h)¡ 8f(x¡h)+ f(x¡ 2h)]

is an approximation of f 0(x) of higher order. With some more work (do it!), we find that the error is
¡ 1

30 f
(5)(x)h4+O(h6) so that this is an approximation of order 4.

Comment. Note that the above approximations don't change when h is replaced by ¡h (note the factor of
1/h). In other words, the approximations are even functions in h. Consequently, their Taylor expansion in h will
only have even powers of h. That's the reason why the order of the Richardson extrapolation is 4 rather than
order 3 which is what one would otherwise expect when extrapolating an order 2 formula.

Example 124. Apply Richardson extrapolation to f 00(x)� 1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)].

Solution. We have seen in Example 115 that the approximation A(h)= 1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)] is of

order 2. Hence,

22A(h)¡A(2h)
22¡ 1 =

1

12h2
[¡f(x+2h)+ 16f(x+h)¡ 30f(x)+ 16f(x¡h)¡ f(x¡ 2h)]

is an approximation of f 00(x) of higher order. With some more work, we find that the error is ¡ 1

90
f (6)(x)h4+

O(h6) so that this is an approximation of order 4.
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In the previous example, we combined A(h) and A(2h) to obtain an approximation of higher order.
There is nothing special about 2h. We can likewise combine A(h1) and A(h2) for any h1, h2.

Example 125. (homework) A(h)= 1

h2
[f(x+h)¡2f(x)+ f(x¡h)] is an order 2 approximation

of f 00(x). Apply Richardson extrapolation to A(h) and A
�
3

2
h
�
to obtain an approximation of

f 00(x) of higher order.
Solution. Since A(h) is an approximation of order 2, we expect A(h) � A� + Ch2 for some constant C.

Correspondingly, A
�
3

2
h
�
�A�+ 9

4
Ch2. Hence, 9

4
A(h)¡A

�
3

2
h
�
�
�
9

4
¡ 1

�
A�=

5

4
A�.

The Richardson extrapolation of A(h) and A
�
3

2
h
�
therefore is:

9

4
A(h)¡A

�
3

2
h
�

5

4

=
1

45h2
h
¡16f

�
x+

3

2
h
�
+ 81f(x+h)¡ 130f(x)+ 81f(x¡h)¡ 16f

�
x¡ 3

2
h
�i

This is an approximation of f 00(x) of higher order. With some more work, we find that the error is
¡ 1

160
f (6)(x)h4+O(h6) so that this is an approximation of order 4.

Example 126. Python Let us now repeat Example 118 with the formula

f 0(x)� 1
12h

[¡f(x+2h)+ 8f(x+h)¡ 8f(x¡h)+ f(x¡ 2h)]

that we obtained in Example 123.

>>> def central_difference_richardson(f, x, h):
return (-f(x+2*h)+8*f(x+h)-8*f(x-h)+f(x-2*h))/(12*h)

Let us again approximate f 0(1)= 2ln(2)� 1.386 for f(x)= 2x at x=1.
>>> [central_difference_richardson(f, 1, 10**-n) for n in range(5)]

[1.375, 1.3862932938249581, 1.3862943610132332, 1.3862943611198109, 1.3862943611187004]

Does the error behave as expected?

>>> [central_difference_richardson(f, 1, 10**-n) - 2*log(2) for n in range(6)]

[-0.011294361119890572, -1.0672949324330716e-06, -1.0665734961889939e-10, -
7.971401316808624e-14, -1.1901590823981678e-12, 1.5093037930569153e-11]

We noted in Example 123 that the approximation is of order 4. Indeed, we can see how the error
decreases roughly by 1/104 initially, as expected.
Moreover, we are able to obtain a much better numerical estimate compared to Example 118:
this time, our best approximation has error 7.97 � 10¡14, which is decently close to the machine
precision of " � 2¡52 � 2.2 � 10¡16. This is because the effect of rounding errors becomes
devastating as h becomes very small. Using a high-order approximation, we are often able to avoid
having to work with very small h.
Indeed, note how we got the best approximation with h=10¡3 (whereas we previously needed to a much smaller
h for the best approximations).
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Notes for Lecture 19 Mon, 11/6/2023

Numerical integration (also known as quadrature)
To numerically integrate a function f(x) on an interval [a; b], one usually uses approximations of
the form Z

a

b

f(x)dx � w0f(x0)+ ���+wnf(xn)=
X
i=0

n

wif(xi);

where the points xi and the weights wi are chosen appropriately.
Comment. Such quadrature rules are typically judged by the maximal degree d of polynomials that they can
integrate without error. For instance, to correctly integrate constant functions (degree 0 polynomials), the weights
need to be such that they add up to b¡ a. (Why?!)

Common quadrature rules include:

� Newton�Cotes rules: equally spaced points xi
These are most useful if f(x) is already computed at equally spaced points, or if evaluation is fast.
There are closed Newton�Cotes rules and open ones. Open means that a and b are not part of the xi.

� Gaussian quadrature: the xi are not equally spaced but chosen carefully
Choosing the xi is similar to our discussion of Chebyshev nodes in polynomial interpolation.
Gaussian quadrature is particularly useful if f(x) is expensive to compute.

Comment. In the case of integrable singularities, such as in
R
0
1 1

x
p dx, we cannot use closed Newton�Cotes.

Because of time constraints, we will focus on the simplest example of a closed Newton�Cotes rule,
namely the trapezoidal rule.
We will then see that combining this with Richardson extrapolation, we can obtain higher order Newton�Cotes
rules such as Simpson's rule.

The (composite) trapezoidal rule

Given equally spaced nodes x0; x1; :::; xn with x0= a and xn= b, we interpolate f(x) on each
segment [xi¡1; xi] by a linear function. Writing h= (b¡ a)/n for the distance between nodes,
the resulting integration rule is the following:

(trapezoidal rule) The following is an approximation of order 2:Z
a

b

f(x)dx� h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]

Why? On each segment [xi¡1;xi], we approximate f(x) by a linear function so that the integral on that segment
becomes the area of a trapezoid and we getZ

xi¡1

xi
f(x)dx�width � average height

area

=h � f(xi¡1)+ f(xi)

2
=
h
2
f(xi¡1)+

h
2
f(xi):

Make a sketch! Adding together the integrals over all segments, each node (except x0 and xn) will show up
twice (hence the factor of 2 in front of f(x1); :::; f(xn¡1)) and we get the claimed integration rule. The fact
that the trapezoidal rule provides an approximation of order 2 is proved in Theorem 127 below.

Sanity check. Note that the weights are h

2
for the first and last node, and h for the others. The sum of the

weights is 2 � h
2
+(n¡ 1) �h=nh= b¡a. That is what we need to integrate constant functions without error.

Indeed, from the construction it is clear that the composite trapezoidal rule integrates linear functions exactly.
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Theorem 127. (trapezoidal rule with error term) If f is C2 smooth, thenZ
a

b

f(x)dx= h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]¡

(b¡ a)
12

f 00(�)h2

for some � 2 [a; b]. In particular, the trapezoidal rule is of order 2.

Proof. On each segment [xi¡1; xi], the error of the interpolation is

f(x)= linear approximation +
1
2
f 00(�)(x¡xi¡1)(x¡xi):

Hence, when integratingZ
xi¡1

xi
f(x)dx=

h
2
f(xi¡1)+

h
2
f(xi)

integral of linear approx.

+

Z
xi¡1

xi 1
2
f 00(�)(x¡xi¡1)(x¡xi)dx

errori

;

so that the error when integrating is

errori=
1
2
f 00( )

Z
xi¡1

xi

(x¡xi¡1)(x¡ xi)dx

=
R
0
hx(x¡h)dx=

h
1
3
x3¡h

2
x2

i
0

h
=¡1

6
h3

=¡ 1
12
f 00( )h3

where  is some value between xi¡1 and xi. Let us briefly justify the �pulling out� of f 00(�) even though �
depends on x. Note that (x¡xi¡1)(x¡xi) is always 6 0 in the integral and, therefore, does not change sign.
This means that the error integral lies between the corresponding integrals where we replace f 00(�) with its
maximum value M and minimum value L; the values M and L no longer depend on x and therefore can be
pulled out of the integral. The above computation then shows that errori is between ¡

1

12h
3M and ¡ 1

12h
3L,

hence must be equal to ¡ 1

12
h3m for some m2 [L;M ]. Since L and M are the minimum and maximum value

of f 00 on [xi¡1; xi], and since f 00 is continuous, it follows that m= f 00( ) for some  .
To get the overall error, we need to add the errors ¡ 1

12
f 00( i)h3 from each segment [xi¡1; xi], where i= 1;

2; :::; n and where  i2 [xi¡1; xi]. The result is

¡ 1
12
f 00( 1)h3+ ���+¡

1
12
f 00( n)h3=¡

nh
12

f 00( 1)+ ���+ f 00( n)
n

=average=f 00(�)

h2=¡b¡ a
12

f 00(�)h2;

where � is some value between a and b. �

Comment. A closer inspection of our proof shows that the f 00(�) in the error formula converges, as h! 0, to
the average value of f 00 on [a; b]. This means that we have a way to obtain an error estimate (rather than only
an error bound). This observation is also useful because it shows that the error is of a form that allows us to
perform Richardson extrapolation.
Advanced comment. Indeed, using the Euler�Maclaurin one can show that the error is

¡f
0(b)¡ f 0(a)

12
h2+

f 000(b)¡ f 000(a)
720

h4+ :::¡B2m
f (2m¡1)(b)¡ f (2m¡1)(a)

(2m)!
h2m+O(h6);

where the B2m are rational numbers known as Bernoulli numbers (provided, of course, that f is C2m¡1

smooth). The fact that only even powers of h show up reflects the fact that the trapezoidal rule is symmetric
(and therefore correctly integrates (x¡ c)n where c=(a+ b)/2 and n is odd).
Note that this more precise form of the error tells us that the Richardson extrapolation of the trapezoidal rule
will be of order 4 (rather than order 3).
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Example 128. Use to approximate
Z
1

31
x
dx= log(3)� 1.09861.

(a) Use the trapezoidal rule with h=1.

(b) Use the trapezoidal rule with h=1/2.

(c) Using Richardson extrapolation, combine the previous two approximations to obtain an
approximation of higher order. What are absolute and relative error?

Comment. We will see in the next section that this is equivalent to using Simpson's rule!

Solution. Let us write f(x)= 1

x
.

(a)
Z
1

3

f(x) dx� h
2
[f(1)+2f(2)+ f(3)]=

1
2

�
1+2 � 1

2
+
1
3

�
=
7
6
� 1.1667

Comment. Make a sketch! Can you explain why our approximation (for any h) will be an overestimate
of the true value of the integral?

(b)
Z
1

3

f(x) dx� h
2

�
f(1)+2f

�
3
2

�
+2f(2)+2f

�
5
2

�
+ f(3)

�
=
1
4

�
1+2 � 2

3
+2 � 1

2
+2 � 2

5
+
1
3

�
=
67
60
� 1.1167

Comment. Note that the previous error
������log(3)¡ 7

6

�������0.068 (h=1) is roughly 3.8 times as large as our

current error
������log(3)¡ 67

60

�������0.018 (h=1/2). Since 3.8� 4, this is in line with what we expect from an

order 2 method (in general, we can only expect to observe this for sufficiently small h).

(c) Let us write A(h) and A
�
h

2

�
for our two approximations, and A� for the true value of the integral.

Since A(h) is an approximation of order 2, we expect A(h)�A�+Ch2 for some constant C.

Correspondingly, A
�
h

2

�
�A�+ 1

4
Ch2. Hence, 4A

�
h

2

�
¡A(h)� (4¡ 1)A�=3A�.

Therefore, the Richardson extrapolation is 1
3

h
4A

�
h

2

�
¡A(h)

i
=
1

3

h
4 � 6760 ¡

7

6

i
=

11
10 = 1.1.

The absolute error is j1.1¡ log(3)j � 0.00139 and the relative error is
������1.1¡ log(3)

log(3)

������� 0.00126.

Comment. Note that 1
3

h
4A

�
h

2

�
¡A(h)

i
=
h

3

h
f(1)+4f

�
3

2

�
+2f(2)+4f

�
5

2

�
+ f(3)

i
. These are the

precisely the weights of Simpson's rule.

Example 129. Python Let us redo Example 128 by implementing the trapezoidal rule.

>>> def trapezoidal_rule(f, a, b, n):
h = (b - a) / n
integral = f(a) + f(b)
for i in range(1,n):

integral += 2*f(a + i*h)
return h/2*integral

>>> def f(x):
return 1/x

Comment. Writing x += y is a useful and common short alternative to x = x + y.

Armin Straub
straub@southalabama.edu

79



Choosing n to be 2 and 4 is equivalent to h= 3¡ 1
2

=1 and h= 3¡ 1
4

= 1

2
and so we get the same

values as in Example 128:

>>> trapezoidal_rule(f, 1, 3, 2)

1.1666666666666665

>>> trapezoidal_rule(f, 1, 3, 4)

1.1166666666666667Your location

As expected, further increasing n produces better approximations:

>>> [trapezoidal_rule(f, 1, 3, 10**n) for n in range(1,4)]

[1.1015623265623264, 1.0986419169811203, 1.0986125849642736]

Indeed, the following convincingly illustrates that the error in the trapezoidal rule is O(h2).

>>> from math import log

>>> [trapezoidal_rule(f, 1, 3, 10**n) - log(3) for n in range(1,6)]

[0.0029500378942166616, 2.9628313010565677e-05, 2.962961638264261e-07,
2.9629636522088276e-09, 2.962430301067798e-11]

However, note that our computer had to work pretty hard to get the final approximation, because that entailed
computing about 105 values. We clearly should use a higher order method in order to compute to higher accuracy.
One option is to do what we did in the last part of Example 128.

Simpson's rule

Let us spell out what happens in general when we proceed as in the last part of Example 128.

We start with T (h), the trapezoidal rule applied with step size h, which is given by

T (h)= h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)]:

Then, since T (h) is an approximation of order N =2, the Richardson extrapolation

S(h) := 2NT (h)¡T (2h)
2N ¡ 1 = 4

3
T (h)¡ 1

3
T (2h)

is an approximation of higher order, known as Simpson's rule. It takes the following form:

(Simpson's rule) Suppose n is even. The following is an approximation of order 4:Z
a

b

f(x)dx� h
3
[f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ ���+2f(xn¡2)+ 4f(xn¡1)+ f(xn)]
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Proof. To see this, note that the trapezoidal approximations T (h) and T (2h) are given by

T (h) =
h
2
[f(x0)+ 2f(x1)+ ���+2f(xn¡1)+ f(xn)];

T (2h) = h[f(x0)+ 2f(x2)+ ���+2f(xn¡2)+ f(xn)]:

Here, we need n to be even so that T (2h) uses the points x0; x2; :::; xn¡2; xn. Therefore, the Richardson
extrapolation is

S(h)=
4
3
T (h)¡ 1

3
T (2h) =

h
3
[2f(x0)+ 4f(x1)+ ���+4f(xn¡1)+ 2f(xn)]

¡h
3
[f(x0)+ 2f(x2)+ ���+2f(xn¡2)+ f(xn)]

=
h
3
[2f(x0)+ 4f(x1)+ 2f(x2)+ ���+2f(xn¡2)+ 4f(xn¡1)+ 2f(xn)];

where the right-hand side is Simpson's rule. That this is an approximation of order 4 follows because the error of
T (h) is an even function in h, so that the order of S(h) increases to 4 (rather than the otherwise expected 3). �

Alternative approach. We can also proceed like for the trapezoidal rule, except that we use quadratic instead
of linear interpolations on each segment. More precisely, starting with equally spaced nodes x0; x1; :::; xn with
n even, we can interpolate f(x) on each segment [xi¡1; xi+1], with i odd, by a quadratic function p(x). The
integral on that segment works out to beZ

xi¡1

xi+1
f(x)dx�

Z
xi¡1

xi+1
p(x)dx =

work h
3
[f(xi¡1)+ 4f(xi)+ f(xi+1)];

where we wrote h=(b¡a)/n for the distance between nodes. Adding together the integrals over all segments,
each node xi, with i odd, will show up once with the above factor of 4h/3 while xi, with i even, (except x0
and xn) will show up twice with a factor of h/3. We thus again get Simpson's integration rule.
Comment. The above rule is often called Simpson's 1/3 rule. There is also Simpson's 3/8 rule which is derived
similarly but is based on a cubic (instead of a quadratic) interpolation; it thus requires an additional node (the
resulting error term is of the same order but about half).

Similar to Theorem 127, one can show that the error in Simpson's rule is as follows:

Theorem 130. (Simpson's rule with error term) If f is C4 smooth, thenZ
a

b

f(x)dx= h
3
[f(x0)+ 4f(x1)+2f(x2)+ ���+4f(xn¡1)+ f(xn)]¡

(b¡ a)
180

f (4)(�)h4

for some � 2 [a; b].

Comment. In the alternative approach above, we constructed Simpson's rule so that quadratic polynomials would
be integrated without error; the error term tells us that, in fact, cubic polynomials are also integrated without
error. In other words, the error term is a pleasant surprise!

Example 131. Use Simpson's rule with h= 1

2
to approximate

Z
1

31
x
dx= log(3)� 1.09861.

Solution.Z
1

3

f(x) dx� h
3

�
f(1)+ 4f

�
3
2

�
+2f(2)+4f

�
5
2

�
+ f(3)

�
=
1
6

�
1+4 � 2

3
+2 � 1

2
+4 � 2

5
+
1
3

�
=
11
10

= 1.1

Comment. Note that 11
10

is exactly what we obtained in the last part of Example 128.

Indeed, recall that Simpson's rule with h= 1

2
(n=4) is equivalent to applying Richardson extrapolation to the

trapezoidal approximations with h= 1

2
(n=4) and h=1 (n=2).
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Example 132. Python Let us compute
R
1

3 1

x
dx= log(3)�1.09861 by implementing Simpson's

rule. The following code assumes that n is even.

>>> def simpson_rule(f, a, b, n):
h = (b - a) / n
integral = f(a) + f(b)
for i in range(1,n):

if i%2 == 1:
integral += 4*f(a + i*h)

else:
integral += 2*f(a + i*h)

return h/3*integral

>>> def f(x):
return 1/x

With n set to 4, we obtain 11
10 as in Examples 128 and 131:

>>> simpson_rule(f, 1, 3, 4)

1.0999999999999999

Our approximations (here, n= 10 and 100) quickly approach the true value:

>>> [simpson_rule(f, 1, 3, 10**n) for n in range(1,3)]

[1.0986605986605984, 1.0986122939305363]

Indeed, the following convincingly illustrates that the error in Simpson's rule is O(h4).
>>> from math import log

>>> [simpson_rule(f, 1, 3, 10**n) - log(3) for n in range(1,6)]

[4.830999248861545e-05, 5.262426494567762e-09, 5.282441151166495e-13, -
1.5543122344752192e-15, -7.105427357601002e-15]

Example 133. Python Various integration methods are already implemented in scipy.

>>> from scipy import integrate

For instance, the following is a way to use Simpson's rule with n=4 (so that 5 points are used).
The result matches the 11

10 that we computed ourselves.

>>> def f(x):
return 1/x

>>> xvalues = [1+1/2*i for i in range(5)]

>>> yvalues = [f(x) for x in xvalues]

>>> integrate.simps(yvalues, xvalues)

1.0999999999999999

On the other hand, the following is a convenient way of �general purpose integration�, where we
only need to specify the end points:

>>> integrate.quad(f, 1, 3)

(1.0986122886681096, 7.555511459798467e-14)

The second part of the result is an estimate for the absolute error.
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Notes for Lecture 20 Wed, 11/8/2023

Coding excursion: iteration vs recursion
The goal of this excursion is to gain some first acquaintance with recursion as a coding technique.
First, in the case of the factorial function, we observe that recursion provides a simple and elegant
way to implement certain kinds of functions. In a second example, we then encounter a potential
issue of recursion that one needs to be aware of.

Example 134. Python We can quickly implement a function for computing n! in an iterative
fashion as follows (such a function is also available in the Python math library as well as in numpy and scipy).
>>> def factorial_iterative(n):

f = 1
for k in range(1,n+1):

f = f*k
return f

>>> factorial_iterative(3)

6

On the other hand, a recursive implementation would take the following form:
>>> def factorial_recursive(n):

if n == 0: return 1
return n * factorial_recursive(n-1)

>>> factorial_recursive(4)

24

Sometimes it is useful to measure how fast code is running. One tool for doing this in Python is
the timeit module. The following measures how many seconds it takes to compute 100! using
our two functions 104 many times.
>>> from timeit import timeit

>>> timeit('factorial_iterative(100)', number=10**4, globals=globals())

0.051031902898103

>>> timeit('factorial_recursive(100)', number=10**4, globals=globals())

0.11693716002628207

As we can see, the recursive implementation is a bit slower (by about a factor of two in this case)
than the iterative implementation. Unless performance was critical, such a difference could be
considered relatively minor and not a reason for us to go out of our way to avoid one or the other
(the time spent coding can be much more valuable than the milliseconds saved by optimized code).
Comment. Finally, just out of curiousity, here is a comparison with the factorial function implemented in the
standard math library that comes with Python. Not surprisingly, that is the fastest (at about 8 times faster than
our iterative implementation).

>>> from math import factorial

>>> timeit('factorial(100)', number=10**4, globals=globals())

0.0072873481549322605

Advanced comment. If you try our recursive function on a large input, you will run into an error about exceeding
the recursion limit. That limit can be increased using the function setrecursionlimit from the sys module.
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Example 135. Python The Fibonacci numbers Fn are defined by the formula Fn+1 = Fn +
Fn¡1 together with the initial conditions F0=F1=1. Below is a recursive implementation that
directly mirrors the mathematical description.

>>> def fibonacci_recursive(n):
if n == 0: return 0
if n == 1: return 1
return fibonacci_recursive(n-1) + fibonacci_recursive(n-2)

>>> [fibonacci_recursive(n) for n in range(10)]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

However, there is trouble!

>>> fibonacci_recursive(34)

5702887

This computation of F34 took more than a second (at least on my little laptop). And the com-
putation of, say, F40 will take ages. Try it and see your machine sweat!

(a) Can you explain why the recursive implementation above is becoming so slow?

(b) Provide an iterative implementation of the Fibonacci numbers that avoids the above issue.

Bonus. For a bonus point, send me your solutions to these before the last week of classes.

Advanced comment. An alternative approach around our issue is to keep the recursive logic but to store
previously computed values. Typically, one uses a dictionary of previously computed values and, at the beginning
of the function, checks whether the current function input has occurred before. In Python one can also add this
behaviour to a function by using a suitable �decorator�.
https://docs.python.org/3/library/functools.html#functools.cache

Numerical methods for solving differential equations

The general form of a first-order differential equation (DE) is y 0= f(x; y).
Comment. Recall that higher-order differential equations can be written as systems of first-order differential
equations: y 0= f(x; y) in terms of y=(y1; y2; y3; :::) where we set y1= y, y2= y 0, y3= y 00, . . . .
It therefore is no loss of generality to develop methods for first-order differential equation. While we will focus
on the case of a single function y(x), the methods we discuss extend naturally to the case of several functions
y(x)= (y1(x); y2(x); :::).

In order to have a unique solution y(x) that we can numerically approximate, we will add an initial
condition. As such, we discuss methods for solving first-order initial value problems (IVPs)

y 0= f(x; y); y(x0)= y0:

Comment. Recall from your Differential Equations class that such an IVP is guaranteed to have a unique solution
under mild assumptions on f(x; y) (for instance, that f(x; y) is smooth around (x0; y0)).
Comment. There would be no loss of generality in only considering initial conditions of the form y(0) = y0.
Indeed, suppose the initial condition is y(x0)= y0. Then, by replacing x by x+x0 in the DE and rewriting the
DE in terms of y~(x)= y(x+ x0), we obtain an IVP with initial condition y~(0)= y0.
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Review of the simplest differential equations

Let's start with one of the simplest (and most fundamental) differential equation (DE). It is first-
order (only a first derivative) and linear (with constant coefficients).

Example 136. Solve y 0=3y.
Solution. The general solution is y(x) = Ce3x. (Note that there is 1 degree of freedom corresponding to the
fact that the differential equation is of order 1.)

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with certain techniques for solving) you can use computer algebra systems to
solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 137. Solve the initial value problem (IVP) y 0=3y, y(0)= 5.
Solution. This has the unique solution y(x)= 5e3x.

The following is a non-linear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 138. Solve y 0=xy2.

Solution. This DE is separable: 1

y2
dy= xdx. Integrating, we find ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1
2
x2+C

=
2

D¡ x2
. [Here, D=¡2C but that relationship doesn't matter.]

Comment. Note that we did not find the singular solution y=0 (lost when dividing by y2). We can obtain it
from the general solution by letting D!1.

Euler's method

Euler's method is a numerical way of approximating the (unique) solution y(x) to the IVP

y 0= f(x; y); y(x0)= y0:

It follows from Taylor's theorem (Theorem 52) that

y(x+h)= y(x)+ y 0(x)h+ 1
2
y 00(�)h2:

Choose a step size h>0. Write xn=x0+nh. Our goal is to provide approximations yn of y(xn)
for n=1; 2; :::.
Since we know y(x0)= y0, we approximate:

y(x0+h) � y(x0)+ y 0(x0)h =
DE

y(x0)+ f(x0; y(x0))h

y(x0+2h) � y(x0+h)+ y 0(x0+h)h =
DE

y(x0+h)+ f(x0+h; y(x0+h))h

y(x0+3h) � y(x0+2h)+ y 0(x0+2h)h =
DE

y(x0+2h)+ f(x0+2h; y(x0+2h))h
���
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Comments.

� Here we use y(x+h)� y(x)+ y0(x)h first with x= x0, then with x=x0+h and so on.

� Note how, when approximating y(x0+mh), we use the previous approximation y(x0+ (m¡ 1)h). All
other quantities on the right-hand side are known to us.

� Clearly, the error in these approximations will accumulate and the approximations are likely worse as we
continue (in other words, our approximations of y(x) will be worse as x gets further away from x0).

Write xn=x0+nh. Our goal is to provide approximations yn of y(xn) for n=1; 2; :::.
Note that we start with x0 and y0 from the initial condition.

In terms of xn and yn our above approximations become:

y(xn+h) � y(xn)+ y 0(xn)
f(xn;y(xn))

h � yn+ f(xn; yn)h := yn

Two kinds of errors. There are two different errors involved here: in the first approximation, the error is from
truncating the Taylor expansion and we know that this local truncation error is O(h2). On the other hand, in
the second approximation, we introduce an error because we use the previous approximation yn instead of y(xn).
Suppose that we approximate y(x) on some interval [x0; xmax] using n steps (so that xn= xmax).

Then the step size is h= xmax¡x0
n

. We therefore have n= xmax¡ x0
h

many local truncation errors of size O(h2).

It is therefore natural to expect that the global error is O(nh2)=O(h).

(Euler's method) The following is an order 1 method for solving IVPs:

xn+1 = xn+h
yn+1 = yn+ f(xn; yn)h

Comment. As explained above, being an order 1 method means that Euler's method has a global error that is
O(h) (while the local truncation error is O(h2)).
Comment. While Euler's method is rarely used in practice, it serves as the foundation for more powerful
extensions such as the Runge�Kutta methods.

Euler's method applied to ex

Example 139. Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for x2 [0; 1]
using Euler's method with 4 steps. In particular, what is the approximation for y(1)?
Comment. Of course, the real solution is y(x)= ex. In particular, y(1)= e� 2.71828.

Solution. The step size is h= 1¡ 0
4

=
1

4
. We apply Euler's method with f(x; y)= y:

x0=0 y0=1

x1=
1
4

y1= y0+ f(x0; y0)h=1+
1
4
=
5
4
= 1.25

x2=
1
2

y2= y1+ f(x1; y1)h=
5
4
+
5
4
� 1
4
=
52

42
= 1.5625

x3=
3
4

y3= y2+ f(x2; y2)h=
52

42
+
52

42
� 1
4
=
53

43
� 1.9531

x4=1 y4= y3+ f(x3; y3)h=
53

43
+
53

43
� 1
4
=
54

44
� 2.4414

In particular, the approximation for y(1) is y4� 2.4414.

Comment. Can you see that, if instead we start with h= 1

n
, then we similarly get xi=

(n+1)i

ni
for i=0;1; :::; n?

In particular, y(1)� yn= (n+1)n

nn
=
�
1+

1

n

�n
! e as n!1. Do you recall how to derive this final limit?
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Example 140. (cont'd) Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for
x 2 [0; 1] using Euler's method with n steps for several values of n. In each case, what is the
approximation for y(1)?
Solution. Since the real solution is y(x)= ex so that, in particular, the exact solution is y(1)= e� 2.71828.
We proceed as we did in Example 139 in the case n=4 and apply Euler's method with f(x; y)= y:

xn+1 = xn+h

yn+1 = yn+h f(xn; yn)

=yn

=(1+h)yn

We observe that it follows from yn+1= (1+ h)yn that yn= (1+ h)ny0. Since y0=1 and h= 1¡ 0
n

=
1

n
, we

conclude that

xn=1; yn=

�
1+

1
n

�n
:

[For instance, for n=4, we get x4=1, y4=
�
5

4

�
4
� 2.4414 as in Example 139.]

In particular, our approximation for y(1) is
�
1+

1

n

�n
.

Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

We can see that Euler's method converges to the correct value as n!1. On the other hand, we can see that it
doesn't converge impressively fast. That is why, for serious applications, one usually doesn't use Euler's method
directly but rather higher-order methods derived from the same principles (such as Runge�Kutta methods).

Interpretation. Note that we can interpret the above values in terms of compound interest. We start with initial
capital of y(0)=1 and we are interested in the capital y(1) after 1 year if we receive interest at an annual rate
of 100%:

� If we receive a single interest payment at the end of the year, then y(1)= 2 (case n=1 above).

� If we receive quarterly interest payments of 100%
4

=25% each, then y(1)=(1.25)4=2.441::: (case n=4).

� If we receive monthly interest payments of 100%
12

=
1

12
each, then y(1)= 2.6130::: (case n= 12).

� If we receive daily interest payments of 100%
365

=
1

365
each, then y(1)= 2.7145::: (case n= 365).

It is natural to wonder what happens if interest payments are made more and more frequently. Well, we already
know the answer! If interest is compounded continuously, then we have e in our bank account after one year.
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Example 141. Python Let us implement Euler's method to redo and extend Example 139.

>>> def euler(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

y0 = y0 + f(x0,y0)*h
x0 = x0 + h
ypoints.append(y0)

return ypoints

>>> def f_y(x, y):
return y

If we choose the number of steps n to be 4 and xmax to be 1 (because we want xn= 1), then
the following matches exactly our computation in Example 139:

>>> euler(f_y, 0, 1, 1, 4)

[1, 1.25, 1.5625, 1.953125, 2.44140625]

As expected, increasing the number of steps provides better approximations to the exact solution
y(x)= ex with y(1)= e� 2.718.

>>> euler(f_y, 0, 1, 1, 10)

[1, 1.1, 1.2100000000000002, 1.3310000000000002, 1.4641000000000002, 1.61051,
1.7715610000000002, 1.9487171, 2.1435888100000002, 2.357947691, 2.5937424601]

>>> euler(f_y, 0, 1, 1, 100)[-1]

2.704813829421526

If ypoints is a list, then its elements can be accessed as ypoints[0], ypoints[1], ::: Moreover, we can access
the last element as ypoints[-1]. For instance, above, we used euler_e(f, 0, 1, 1, 100)[-1] to get the
last element of the 101 approximations y0; y1; :::; y100. That last element is the approximation of y(1)= e.

The following convincingly illustrates that the error in Euler's method is O(h).
>>> from math import e

>>> [euler(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.7182818284590451, -0.124539368359045, -0.013467999037519274, -
0.0013578962231490799, -0.00013590163381849152, -1.3591284549807625e-05]

However, note that our computer had to work pretty hard to get the final approximation, because that entailed
computing 105 values. We clearly need a higher order method in order to compute to higher accuracy.
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Taylor methods

(Taylor method of order k) The following is an order k method for solving IVPs:

xn+1 = xn+h

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h2+ ���+ 1

k!
f (k¡1)(xn; yn)hk

where f (n)(x; y) is short for dn

dxn
f(x; y(x)) (expressed in terms of f and its partial derivatives).

For instance. f 0(x; y)= d

dx
f(x; y(x))= fx(x; y)+ fy(x; y)y

0(x)= fx(x; y)+ fy(x; y)f(x; y)

Especially for higher derivatives, it is easier to compute these for specific f . See next example.
Comment. As for Euler's method, being an order k method means that the method has a global error that is
O(hk) (while the local truncation error is O(hk+1); note that we can see this because we truncate the Taylor
expansion of y(x) after hk so that the next term is O(hk+1)).

Example 142. Spell out the Taylor method of order 2 for numerically solving the IVP

y 0= cos(x)y; y(0)=1:

Solution. The Taylor method of order 2 is based on the Taylor expansion

y(x+h)= y(x)+ y 0(x)h+
1

2
y00(x)h2+O(h3);

where we have a local truncation error of O(h3) so that the global error will be O(h2).
From the DE we know that y 0(x)= cos(x)y, which is f(x; y). We differentiate this to obtain

y00(x) =
d
dx

cos(x)y=¡sin(x)y+ cos(x)y 0=¡sin(x)y+ cos2(x) y

= (¡sin(x)+ cos2(x))y;

which is f 0(x; y). Hence, the Taylor method of order 2 takes the form:

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h

2

= yn+ cos(xn)ynh+
1

2
((¡sin(xn)+ cos2(xn))yn)h2

For any choice of h, we can therefore compute (x1; y1); (x2; y2); ::: starting with (x0; y0) by the above recursive
formula combined with xn+1=xn+h.
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Example 143. Spell out the Taylor method of order 3 for numerically solving the IVP

y 0= cos(x)y; y(0)=1:

Solution. The Taylor method of order 3 is based on the Taylor expansion

y(x+h)= y(x)+ y0(x)h+
1

2
y 00(x)h2+

1

6
y 000(x)h3+O(h4);

where we have a local truncation error of O(h4) so that the global error will be O(h3).
From the DE we know that y0(x)= cos(x)y, which is f(x; y). As in the previous example, we differentiate this
to obtain

y00(x) =
d
dx

cos(x)y=¡sin(x)y+ cos(x)y 0=¡sin(x)y+ cos2(x) y

= (¡sin(x)+ cos2(x))y;

which is f 0(x; y). Once more differentiating this, we obtain

y 000(x) =
d
dx
(¡sin(x)+ cos2(x))y

= (¡cos(x)¡ 2cos(x)sin(x))y+(¡sin(x)+ cos2(x))y 0

= (cos2(x)¡ 3sin(x)¡ 1)cos(x)y;

which is f 00(x; y). Hence, the Taylor method of order 3 takes the form:

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h

2+
1

6
f 00(xn; yn)h

3

= yn+ cos(xn)ynh+
1

2
((¡sin(xn)+ cos2(xn))yn)h2+

1

6
((cos2(xn)¡ 3sin(xn)¡ 1)cos(xn)yn)h3

Comment. The exact solution of this IVP is y(x)= esin(x). We use this in the next example for comparison.

Example 144. Python Let us use Python to approximate the solution y(x) of the IVP from
the previous example for x2 [0; 2].
>>> from math import e, cos, sin

>>> def taylor_3_cosy(x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

y0 = y0 + cos(x0)*y0*h + 1/2*(cos(x0)**2-sin(x0))*y0*h**2 + \
1/6*(cos(x0)**2-3*sin(x0)-1)*cos(x0)*y0*h**3

x0 = x0 + h
ypoints.append(y0)

return ypoints

Since the exact solution is y(x)= esin(x), we have y(2)= esin(2)� 2.48258.

>>> taylor_3_cosy(0, 1, 2, 4)

[1, 1.625, 2.3475297541746047, 2.7350418255304874, 2.476391322837691]

For comparison, the exact values of the solution at these four steps are:

>>> [e**sin(i/2) for i in range(5)]

[1.0, 1.6151462964420837, 2.319776824715853, 2.7114810176821584, 2.4825777280150003]
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The following convincingly illustrates that the error is indeed O(h3).

>>> [taylor_3_cosy(0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]

[2.5174222719849997, -0.0002461575553160955, -1.6375769584797695e-07, -
1.5647971807197791e-10, 2.0339285811132868e-13]

The following is a plot of the exact solution together with our approximations when using 2, 4 and
8 steps. Already for 4 steps, we obtain an approximation that, at least visually, is remarkably good.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.00

1.25

1.50

1.75

2.00

2.25
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2.75 y(x)
n = 2
n = 4
n = 8

On the other hand, for comparison, the following plot shows the corresponding approximations
when using Euler's method instead.
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Midpoint method (also known as the modified Euler method)

Recall that, in Euler's method (which is the same as the Taylor method of order 1) with step size
h, we use yn+1= yn+ f(xn; yn)h because f(xn; yn) is an approximation of y 0(xn).
To get a better approximation y~n+1, we could do two small Euler steps (of size h/2 each) instead.
We can then use the idea of Richardson extrapolation to combine Euler's yn+1 and the twice-
Euler y~n+1 to get an approximation of higher order. This results in the following method:

(midpoint method) The following is an order 2 method for solving IVPs:

xn+1 = xn+h

yn+1 = yn+ f

�
xn+

h
2
; yn+ f(xn; yn)

h
2

�
h

Advantage over Taylor method. When compared with the Taylor method of order 2, this has the advantage
of not requiring us to determine partial derivatives of f(x; y).
Why �midpoint�? In Euler's method, we use y 0(xn) � f(xn; yn) as the slope for stepping from xn to
xn+1=xn+h. That is a bit unbalanced since we use the slope at the left endpoint for the entire interval (that's
why Euler's method in the form we have seen is often called the forward Euler method). Note that the midpoint
method is more balanced because it uses (an approximation of) the derivative at the midpoint xn+h/2 instead.
How to derive the midpoint method. As mentioned above, we can derive the midpoint method by applying
the idea of Richardson extrapolation to the Euler method.

� If we do one Euler step, then our approximation of y(xn+1) is yn+1
(1)

= yn+ f(xn; yn)h.

We know that the error in this approximation is roughly Ch2 (in fact, C � 1

2
y00(xn) if h is small).

� If we do two Euler steps, then our approximation is yn+1
(2)

= yhalf+ f(xhalf; yhalf)
h

2
where xhalf=xn+

h

2

and yhalf= yn+ f(xn; yn)
h

2
are the result of the first Euler step with step size h

2
.

Combined, we get yn+1
(2)

= yn+ f(xn; yn)
h

2
+ f

�
xn+

h

2
; yn+ f(xn; yn)

h

2

�
h

2
.

The error should be roughly 2C
�
h

2

�
2
=
1

2
Ch2 because we are doing 2 steps with step size h

2
.

[For small h, the constant C should still be as before, at least to first order.]

� As for Richardson extrapolation, 2yn+1
(2) ¡ yn+1

(1) should therefore be an approximation of y(xn+1) of
order 3 (for the local truncation error).

Indeed, 2yn+1
(2) ¡ yn+1

(1)
= yn+ f

�
xn+

h

2
; yn+ f(xn; yn)

h

2

�
h is precisely the midpoint method, which

therefore should have global error of order 2.

An alternative way to show that the order is 2. We can also show that the midpoint method is of order 2 by
computing and comparing Taylor expansions. The true solution has the expansion

y(x+h) = y(x)+ y 0(x)h+
1

2
y00(x)h2+O(h3)

= y(x)+ f(x; y(x))h+
1

2

h
d

dx
f(x; y(x))

i
=fx(x;y)+fy(x;y)�y 0(x)

h2+O(h3)

= y+ f(x; y)h+
1

2
(fx(x; y)+ fy(x; y)f(x; y))h

2+O(h3):

On the other hand, expanding the f(:::) term on the right-hand side of the midpoint method (with x and y in
place of xn and yn) using the multivariate chain rule, we find

y+ f

�
x+

h
2
; y+ f(x; y)

h
2

�
h = y+

�
f(x; y)+

�
fx(x; y)

1
2
+ fy(x; y)

f(x; y)
2

�
h+O(h2)

�
h;

which agrees with the true expansion up to O(h3).
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Example 145. Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for x2 [0; 1]
using the midpoint method with 4 steps. In particular, what is the approximation for y(1)?
Comment. Compare with Example 139. The real solution is y(x)= ex so that y(1)= e� 2.71828.

Solution. The step size is h= 1¡ 0
4

=
1

4
. We apply the midpoint method with f(x; y)= y:

x0=0 y0=1

x1=
1
4

y1= y0+ f

�
x0+

h
2
; y0+ f(x0; y0)

h
2

�
h=

41
32
� 1.2813

x2=
1
2

y2= y1+ f

�
x1+

h
2
; y1+ f(x1; y1)

h
2

�
h=

412

322
� 1.6416

x3=
3
4

y3= y2+ f

�
x2+

h
2
; y2+ f(x2; y2)

h
2

�
h=

413

323
� 2.1033

x4=1 y4= y3+ f

�
x3+

h
2
; y3+ f(x3; y3)

h
2

�
h=

414

324
� 2.6949

In particular, the approximation for y(1) is y4� 2.6949, which is a noticeable improvement over Example 139,
where we used the Euler method instead.
Comment. The above computations become particularly transparent if we realize that, for f(x; y) = y, each

Euler step takes the simple form yn+1= yn+ f
�
xn+

h

2
; yn+ f(xn; yn)

h

2

�
h= yn

�
1+h+

h2

2

�
.

It follows that yn=
�
1+h+

h2

2

�n
. Can you see how, as h! 0, this allows us to recover the exact solution?

Example 146. Python Let us apply the midpoint method to y 0= y, y(0)=1.

>>> def midpoint(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

y0 = y0 + f(x0+h/2,y0+f(x0,y0)*h/2)*h
x0 = x0 + h
ypoints.append(y0)

return ypoints

>>> def f_y(x, y):
return y

The exact solution is y(x)= ex with y(1)= e� 2.718.

>>> midpoint(f_y, 0, 1, 1, 4)

[1, 1.28125, 1.6416015625, 2.103302001953125, 2.6948556900024414]

The following numerically confirms that the error in the midpoint method is O(h2).
>>> from math import e

>>> [midpoint(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.2182818284590451, -0.004200981850821073, -4.49658990882007e-05, -
4.5270728232793545e-07, -4.530157138304958e-09, -4.530020802917534e-11]
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Runge�Kutta methods

The midpoint method can be written as:

xn+1 = xn+h

yn+1 = yn+K1h

K0 = f(xn; yn)

K1 = f

�
xn+

h
2
; yn+K0

h
2

�
Note that replacing the rule by yn+1 = yn + K0h results in Euler's method. Indeed, both K0 and K1 are
approximations of the slope y 0 that we need for stepping from xn to xn+1=xn+h.

Adding further such approximations Ki to the mix, one can eliminate further terms in the error
expansion and obtain higher order methods known as Runge�Kutta methods.
The midpoint method is an example of a Runge�Kutta method of order 2 (but there are others as well).
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Of particular practical importance is the following instance:

(Runge�Kutta method of order 4)

xn+1 = xn+h

yn+1 = yn+
1
6
(K0+2K1+2K2+K3)h

K0 = f(xn; yn)

K1 = f

�
xn+

h
2
; yn+K0

h
2

�
K2 = f

�
xn+

h
2
; yn+K1

h
2

�
K3 = f(xn+h; yn+K2h)

Comment. Note how each of K0; K1; K2; K3 is an approximation of y 0 on the interval [xn; xn+1] (with K0

approximating y 0(xn) and K3 approximating y 0(xn+1)). By taking the appropriate weighted average, we are
able to get an approximation with a higher order.
Advanced comment. Note that the weights (with K1 and K2 combined because they both correspond to the
midpoint xn+h/2) are the same as in Simpson's rule for numerical integration. That is more than a coincidence.
Indeed, if f(x; y)= f(x) does not depend on y, then solving the DE is equivalent to integrating f(x) and the
Runge�Kutta method of order 4 turns into Simpson's rule.

Example 147. Python Let us implement the Runge�Kutta method of order 4.

>>> def runge_kutta4(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

K0 = f(x0,y0)
K1 = f(x0+h/2, y0+K0*h/2)
K2 = f(x0+h/2, y0+K1*h/2)
K3 = f(x0+h, y0+K2*h)
y0 = y0 + (K0 + 2*K1 + 2*K2 + K3)*h/6
x0 = x0 + h
ypoints.append(y0)

return ypoints

Armin Straub
straub@southalabama.edu

94

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods


First, for comparison with earlier methods, let us apply the method to the IVP y 0= y, y(0)= 1,
which has the exact solution y(x)= ex with y(1)= e� 2.718.

>>> def f_y(x, y):
return y

>>> runge_kutta4(f_y, 0, 1, 1, 4)

[1, 1.2840169270833333, 1.648699469036526, 2.1169580259162033, 2.718209939201323]

The following convincingly illustrates that the error is indeed O(h4).
>>> from math import e

>>> [runge_kutta4(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.009948495125712054, -2.0843238792700447e-06, -2.2464119453502462e-10, -
2.042810365310288e-14, 1.1546319456101628e-14, 6.217248937900877e-15]

Pause for a moment to really appreciate how much better these errors are in comparison with Euler's method!
Whereas computing 105 values with Euler's method resulted in an error of 1.36 �10¡5, we are now able to obtain
an error of 2.04 � 10¡14 with only 103 values.

As a second example, let us consider as in Example 144 the IVP y 0 = cos(x)y with y(0) = 1,
which has the exact solution y(x)= esin(x) with y(2)= esin(2)� 2.48258.

>>> def f_cosx_y(x, y):
return cos(x)*y

>>> runge_kutta4(f_cosx_y, 0, 1, 2, 4)

[1, 1.614859377441316, 2.3191895982789603, 2.7107641474177457, 2.481902218021582]

The following again convincingly illustrates that the error is indeed O(h4).
>>> from math import e

>>> [runge_kutta4(f_cosx_y, 0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]

[-0.12999578105593113, -1.726387102785054e-05, -1.6494263732624859e-09, -
1.6431300764452317e-13, 3.419486915845482e-13]

Important comment. Note that, in contrast to Example 144, we did not have to compute partial derivatives of
f(x; y)= cos(x)y by hand. Instead, we were able to simply use cos(x)y in our runge_kutta4 function.
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A glance at discretizing PDEs

One of the most important partial differential equations is the following equation which, for
instance, models the steady-state temperature u(x; y) of a region in two-dimensional space.

(Laplace equation, 2D)

uxx+uyy=0

Notation. Here, for instance, uxx=
@2

@x2
u(x; y) is used to denote two partial derivatives with respect to x.

The Laplace equation is often written as �u=0, where �=
@2

@x2
+

@2

@y2
is the Laplace operator you may know

from Calculus III.
The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.

Higher dimensions. Likewise, the Laplace equation in three dimensions is �u=0 with �=
@2

@x2
+

@2

@y2
+

@2

@z2
.

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
It is also known as the potential equation and is satisfied by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x; y) is the vector

field F = grad f =rf =
�
fx(x; y)
fy(x; y)

�
. One says that F is a gradient field and f is a potential function for F

(for instance, F could be a gravitational field with gravitational potential f).

One way to describe a unique solution to the Laplace equation within a region is by specifying the
values of u(x; y) along the boundary of that region.

This is particularly natural for steady-state temperatures profiles of a region R. The Laplace equation governs
how temperature behaves inside the region but we need to also prescribe the temperature on the boundary.

The PDE with such a boundary condition is called a Dirichlet problem:

(Dirichlet problem)
uxx+uyy=0 within region R

u(x; y)= f(x; y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (�Dirichlet boundary conditions�).
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Discretizing the Laplace operator

Recall from Example 115 that the following central difference is an order 2 approximation of f 00(x).

f 00(x)� 1
h2
[f(x+h)¡ 2f(x)+ f(x¡h)]:

Example 148. (discretizing �) Use the above central difference approximation for second
derivatives to derive a finite difference for �u=uxx+uyy in 2D.

Solution.

uxx + uyy � 1

h2
[u(x+h; y)¡ 2u(x; y)+u(x¡h; y)] + 1

h2
[u(x; y+h)¡ 2u(x; y)+u(x; y¡h)]

=
1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)]

Notation. This finite difference is typically represented as 1

h2

24 1
1 ¡4 1

1

35, the five-point stencil.
Comment. Recall that solutions to �u=0 are supposed to describe steady-state temperature distributions. We
can see from our discretization that this is reasonable. Namely, �u=0 becomes approximately equivalent to

u(x; y)=
1
4
(u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)):

In other words, the temperature u(x; y) at a point (x; y) should be the average of the temperatures of its four
�neighbors� u(x+h; y) (right), u(x¡h; y) (left), u(x; y+h) (top), u(x; y¡h) (bottom).
Comment. Think about how to use this finite difference to numerically solve the corresponding Dirichlet problem
by discretizing (one equation per lattice point).
Advanced comment. If �u = 0 then, when discretizing, the center point has the average value of the four
points adjacent to it. This leads to the maximum principle: if �u=0 on a region R, then the maximum (and,
likewise, minimum) value of u must occur at a boundary point of R.
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Notes for Lecture 24 Mon, 12/4/2023

Example 149. Discretize the following Dirichlet problem:
uxx+uyy = 0 (PDE)
u(x; 0) = 2
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Use a step size of h= 1

3
.

Comment. Note that, for the Dirichlet problem as well as for our discretization, it doesn't matter that the
boundary conditions aren't well-defined at the corners.

Solution. Note that our rectangle has side lengths 1 (in x direction) and 2 (in y direction). With a step size of
h=

1

3
we therefore get 4 � 7 lattice points, namely the points

um;n=u(mh;nh); m2f0; 1; 2; 3g; n2f0; 1; :::; 6g:

Further note that the boundary conditions determine the values of um;n if m=0 or m=3 as well as if n=0
or n=6. This leaves 2 � 5= 10 points at which we need to determine the value of um;n.

Next, we approximate uxx+uyy by 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)] (see

previous example for how we obtained this finite difference approximation). Note that, if u(x; y)=um;n is one
of our lattice points, then the other four terms in the finite difference are lattice points as well; for instance,
u(x+h; y)=um+1;n. The equation uxx+uyy=0 therefore translates into

um+1;n+um¡1;n+um;n+1+um;n¡1¡ 4um;n=0:

Spelling out these equation for each m 2 f1; 2g and n 2 f1; 2; :::; 5g, we get 10 (linear) equations for our 10
unknown values. For instance, here are the equations for (m;n)= (1; 1), (1; 2) as well as (2; 5):

u2;1+u0;1

=0

+u1;2+u1;0

=2

¡ 4u1;1 = 0

u2;2+u0;2

=0

+u1;3+u1;1¡ 4u1;2 = 0

���
u3;5

=0

+u1;5+u2;6

=3

+u2;4¡ 4u2;5 = 0

In matrix-vector form, these linear equations take the form:

266664
¡4 1 0 0 0 1 0 0 0 0
1 ¡4 1 0 0 0 1 0 0 0

���
0 0 0 0 1 0 0 0 1 ¡4

377775

26666666666666666666666666666664

u1;1
u1;2
u1;3
u1;4
u1;5
u2;1
u2;2
u2;3
u2;4
u2;5

37777777777777777777777777777775
=

266664
¡2
0
���
¡3

377775

Solving this system, we find u1;1� 0.7847, u1;2� 0.3542, :::, u2;5� 1.1597.

For comparison, the corresponding exact values are u
�
1

3
;
1

3

�
�0.7872, u

�
1

3
;
2

3

�
�0.3209, :::, u

�
2

3
;
5

3

�
�1.1679.
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The three plots below visualize the discretized solution with h= 1

3
from Example 149, the exact

solution, as well as the discretized solution with h= 1

20 .
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Comment. The first plot looks a bit overly rough because we chose not to interpolate the values. As we showed
above, the approximate values at the ten lattice points are actually pretty decent for such a large step size.
Warning. The resulting linear systems quickly become very large. For instance, if we use a step size of h= 1

100
,

then we need to determine roughly 100 � 200= 20,000 (99 � 199 to be exact) values um;n. The corresponding
matrixM will have about 20,0002=400,000,000 entries, which is already challenging for a weak machine if we
use generic linear algebra software. At this point it is important to realize that most entries of the matrixM are
0. Such matrices are called sparse and there are efficient algorithms for solving systems involving such matrices.

Example 150. Discretize the following Dirichlet problem:
uxx+uyy = 0 (PDE)
u(x; 0) = 2
u(x; 1) = 3
u(0; y) = 1
u(2; y) = 4

(BC)

Use a step size of h= 1

2
.

Solution. Note that our rectangle has side lengths 2 (in x direction) and 1 (in y direction). With a step size of
h=

1

2
we therefore get 5 � 3 lattice points, namely the points

um;n=u(mh; nh); m2f0; 1; 2; 3; 4g; n2f0; 1; 2g:

Further note that the boundary conditions determine the values of um;n if m=0 or m=4 as well as if n=0
or n=2. This leaves 3 � 1=3 points at which we need to determine the value of um;n.

If we approximate uxx+uyy by 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)] then, in

terms of our lattice points, the equation uxx+uyy=0 translates into

um+1;n+um¡1;n+um;n+1+um;n¡1¡ 4um;n=0:

Spelling out these equation for each m2f1; 2; 3g and n=1, we get 3 equations for our 3 unknown values:

u2;1+u0;1

=1

+u1;2

=3

+u1;0

=2

¡ 4u1;1 = 0

u3;1+u1;1+u2;2

=3

+u2;0

=2

¡ 4u2;1 = 0

u4;1

=4

+u2;1+u3;2

=3

+u3;0

=2

¡ 4u3;1 = 0

In matrix-vector form, these linear equations take the form:24 ¡4 1 0
1 ¡4 1
0 1 ¡4

35
2664 u1;1
u2;1
u3;1

3775 =

24 ¡6
¡5
¡9

35
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Example 151. Consider the polygonal region with vertices (0;0), (4;0), (4;2), (2;2), (2;3), (0;3).
We wish to find the steady-state temperature distribution u(x; y) within this region if the tem-
perature is A between (0; 0), (4; 0), and B elsewhere on the boundary.

Spell out the resulting equations when we discretize this problem using a step size of h=1.
Solution. As before, we write um;n=u(mh;nh). Make a sketch!

B
B u1;2 B B
B u1;1 u2;1 u3;1 B

A A A

If we approximate uxx+uyy by 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)] then, in

terms of our lattice points, the equation uxx+uyy=0 translates into

um+1;n+um¡1;n+um;n+1+um;n¡1¡ 4um;n=0:

Spelling out these equation in matrix-vector form, we obtain:266664
¡4 1 0 1
1 ¡4 1 0
0 1 ¡4 0
1 0 0 ¡4

377775
26666664
u1;1
u2;1
u3;1
u1;2

37777775 =

266664
¡A¡B
¡A¡B
¡A¡ 2B
¡3B

377775
Comment. Note that, because of the way we discretize, it matters that there is a well-defined temperature at
the boundary vertex (2; 2). For the other vertices, we don't need a well-defined temperature (and so it is not a
problem that it is unclear what the temperature should be at (0; 0) or (4; 0) where it jumps from A to B).

Fun in different bases

Example 152. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer
applications.
For instance, in JavaScript or Python, 0b::: means (:::)2, 0o::: means (:::)8, and 0x::: means (:::)16.
The digits 0; 1; :::; 15 in hexadecimal are typically written as 0; 1; :::; 9; A;B;C;D;E; F .
Example. FACE value in decimal? (FACE)16= 15 � 163+ 10 � 162+ 12 � 16+ 14= 64206
Practical example. chmod 664 file.tex (change file permission)

664 are octal digits, consisting of three bits: 1= (001)2 execute (x), 2= (010)2 write (w), 4= (100)2 read (r)

Hence, 664 means rw,rw,r. What is rwx,rx,-? 750

By the way, a fourth (leading) digit can be specified (setting the flags: setuid, setgid, and sticky).

Example 153. (terrible jokes, parental guidance advised)
There are I0 types of people ::: those who understand binary, and those who don't.

Of course, you knew that. How about:
There are II types of people ::: those who understand Roman numerals, and those who don't.

It's not getting any better:
There are I0 types of people ::: those who understand hexadecimal, F the rest :::

Example 154. (yet another joke) Why do mathematicians confuse Halloween and Christmas?

Because 31 Oct = 25 Dec.
Get it? (31)8=1+3 � 8= 25 equals (25)10= 25.

Fun borrowed from: https://en.wikipedia.org/wiki/Mathematical_joke
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Excursion: A glance at numerical instability

Example 155. Recall that the quadratic equation ax2+ bx+ c=0 has up to two solutions, which

are given by ¡b� b2¡ 4ac
p
2a

.

Let us apply this formula to the example (x¡ 106)(x¡ 10¡10)=x2¡ (106+ 10¡10)x+ 10¡4.

>>> b, c = -10**6-10**-10, 10**-4

>>> (-b + (b**2 - 4*c)**(1/2))/2

1000000.0

>>> (-b - (b**2 - 4*c)**(1/2))/2

1.1641532182693481e-10

Observe how the first root is computed correctly but the second root has a relative error of 0.164
(i.e. a percentage error of 16.4%). The reason for this large error is that the¡b and the b2¡ 4ac

p
are very close to each other so that subtracting them results in a loss of precision.

In this example, we can avoid this loss of significant digits by observing that

¡b� b2¡ 4ac
p
2a

= b2¡ (b2¡ 4ac)
2a

¡
¡b� b2¡ 4ac

p �= ¡2c
b� b2¡ 4ac

p :

Indeed, using the right-hand side instead, we get the following:

>>> -2*c / (b + (b**2-4*c)**(1/2))

858993.4592

>>> -2*c / (b - (b**2-4*c)**(1/2))

1e-10

Now, the first root has a large relative error (explain why!) but the second root is computed
correctly. In the case b < 0, we can therefore compute both roots without numerical issues by

using ¡b+ b2¡ 4ac
p
2a

as well as ¡2c
b¡ b2¡ 4ac

p (instead of ¡b¡ b2¡ 4ac
p
2a

).

Comment. Make sure you see how this avoids in both cases the issue of subtracting numbers that are close to
each other.
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