Example 149. Discretize the following Dirichlet problem:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \\
& u(x, 0)=2 \\
& u(x, 2)=3 \\
& u(0, y)=0 \tag{BC}\\
& u(1, y)=0
\end{align*} \quad(\mathrm{BC})
$$

Use a step size of $h=\frac{1}{3}$.
Comment. Note that, for the Dirichlet problem as well as for our discretization, it doesn't matter that the boundary conditions aren't well-defined at the corners.

Solution. Note that our rectangle has side lengths 1 (in x direction) and 2 (in y direction). With a step size of $h=\frac{1}{3}$ we therefore get $4 \cdot 7$ lattice points, namely the points

$$
u_{m, n}=u(m h, n h), \quad m \in\{0,1,2,3\}, n \in\{0,1, \ldots, 6\}
$$

Further note that the boundary conditions determine the values of $u_{m, n}$ if $m=0$ or $m=3$ as well as if $n=0$ or $n=6$. This leaves $2 \cdot 5=10$ points at which we need to determine the value of $u_{m, n}$.
Next, we approximate $u_{x x}+u_{y y}$ by $\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$ (see previous example for how we obtained this finite difference approximation). Note that, if $u(x, y)=u_{m, n}$ is one of our lattice points, then the other four terms in the finite difference are lattice points as well; for instance, $u(x+h, y)=u_{m+1, n}$. The equation $u_{x x}+u_{y y}=0$ therefore translates into

$$
u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}-4 u_{m, n}=0
$$

Spelling out these equation for each $m \in\{1,2\}$ and $n \in\{1,2, \ldots, 5\}$, we get 10 (linear) equations for our 10 unknown values. For instance, here are the equations for $(m, n)=(1,1),(1,2)$ as well as $(2,5)$:

$$
\begin{gathered}
u_{2,1}+\underbrace{u_{0,1}}_{=0}+u_{1,2}+\underbrace{u_{1,0}}_{=2}-4 u_{1,1}=0 \\
u_{2,2}+\underbrace{u_{0,2}}_{=0}+u_{1,3}+u_{1,1}-4 u_{1,2}=0 \\
\vdots \\
\underbrace{u_{3,5}}_{=0}+u_{1,5}+\underbrace{u_{2,6}}_{=3}+u_{2,4}-4 u_{2,5}=0
\end{gathered}
$$

In matrix-vector form, these linear equations take the form:

$$
\left[\begin{array}{cccccccccc}
-4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
& & & & \vdots & & & & & \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -4
\end{array}\right]\left[\begin{array}{c}
u_{1,1} \\
u_{1,2} \\
u_{1,3} \\
u_{1,4} \\
u_{1,5} \\
u_{2,1} \\
u_{2,2} \\
u_{2,3} \\
u_{2,4} \\
u_{2,5}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
\vdots \\
-3
\end{array}\right]
$$

Solving this system, we find $u_{1,1} \approx 0.7847, u_{1,2} \approx 0.3542, \ldots, u_{2,5} \approx 1.1597$.

For comparison, the corresponding exact values are $u\left(\frac{1}{3}, \frac{1}{3}\right) \approx 0.7872, u\left(\frac{1}{3}, \frac{2}{3}\right) \approx 0.3209, \ldots, u\left(\frac{2}{3}, \frac{5}{3}\right) \approx 1.1679$.

The three plots below visualize the discretized solution with $h=\frac{1}{3}$ from Example 149, the exact solution, as well as the discretized solution with $h=\frac{1}{20}$.

Comment. The first plot looks a bit overly rough because we chose not to interpolate the values. As we showed above, the approximate values at the ten lattice points are actually pretty decent for such a large step size.
Warning. The resulting linear systems quickly become very large. For instance, if we use a step size of $h=\frac{1}{100}$, then we need to determine roughly $100 \cdot 200=20,000\left(99 \cdot 199\right.$ to be exact) values $u_{m, n}$. The corresponding matrix M will have about $20,000^{2}=400,000,000$ entries, which is already challenging for a weak machine if we use generic linear algebra software. At this point it is important to realize that most entries of the matrix M are 0 . Such matrices are called sparse and there are efficient algorithms for solving systems involving such matrices.

Example 150. Discretize the following Dirichlet problem:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \\
& u(x, 0)=2 \\
& u(x, 1)=3 \\
& u(0, y)=1 \quad(\mathrm{BC}) \tag{BC}\\
& u(2, y)=4
\end{align*}
$$

Use a step size of $h=\frac{1}{2}$.
Solution. Note that our rectangle has side lengths 2 (in x direction) and 1 (in y direction). With a step size of $h=\frac{1}{2}$ we therefore get $5 \cdot 3$ lattice points, namely the points

$$
u_{m, n}=u(m h, n h), \quad m \in\{0,1,2,3,4\}, n \in\{0,1,2\} .
$$

Further note that the boundary conditions determine the values of $u_{m, n}$ if $m=0$ or $m=4$ as well as if $n=0$ or $n=2$. This leaves $3 \cdot 1=3$ points at which we need to determine the value of $u_{m, n}$.
If we approximate $u_{x x}+u_{y y}$ by $\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$ then, in terms of our lattice points, the equation $u_{x x}+u_{y y}=0$ translates into

$$
u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}-4 u_{m, n}=0
$$

Spelling out these equation for each $m \in\{1,2,3\}$ and $n=1$, we get 3 equations for our 3 unknown values:

$$
\begin{aligned}
& u_{2,1}+\underbrace{u_{0,1}}_{=1}+\underbrace{u_{1,2}}_{=3}+\underbrace{u_{1,0}}_{=2}-4 u_{1,1}=0 \\
& u_{3,1}+u_{1,1}+\underbrace{u_{2,2}}_{=3}+\underbrace{u_{2,0}}_{=2}-4 u_{2,1}=0 \\
& u_{=4}^{u_{4,1}}+u_{2,1}+\underbrace{u_{3,2}}_{=3}+\underbrace{u_{3,0}}_{=2}-4 u_{3,1}=0
\end{aligned}
$$

In matrix-vector form, these linear equations take the form:

$$
\left[\begin{array}{ccc}
-4 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{2,1} \\
u_{3,1}
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-5 \\
-9
\end{array}\right]
$$

Example 151. Consider the polygonal region with vertices $(0,0),(4,0),(4,2),(2,2),(2,3),(0,3)$. We wish to find the steady-state temperature distribution $u(x, y)$ within this region if the temperature is A between $(0,0),(4,0)$, and B elsewhere on the boundary.
Spell out the resulting equations when we discretize this problem using a step size of $h=1$.
Solution. As before, we write $u_{m, n}=u(m h, n h)$. Make a sketch!

$$
\begin{array}{lllll}
& B & & & \\
B & u_{1,2} & B & B & \\
B & u_{1,1} & u_{2,1} & u_{3,1} & B \\
& A & A & A &
\end{array}
$$

If we approximate $u_{x x}+u_{y y}$ by $\frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$ then, in terms of our lattice points, the equation $u_{x x}+u_{y y}=0$ translates into

$$
u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}-4 u_{m, n}=0 .
$$

Spelling out these equation in matrix-vector form, we obtain:

$$
\left[\begin{array}{cccc}
-4 & 1 & 0 & 1 \\
1 & -4 & 1 & 0 \\
0 & 1 & -4 & 0 \\
1 & 0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{2,1} \\
u_{3,1} \\
u_{1,2}
\end{array}\right]=\left[\begin{array}{c}
-A-B \\
-A-B \\
-A-2 B \\
-3 B
\end{array}\right]
$$

Comment. Note that, because of the way we discretize, it matters that there is a well-defined temperature at the boundary vertex $(2,2)$. For the other vertices, we don't need a well-defined temperature (and so it is not a problem that it is unclear what the temperature should be at $(0,0)$ or $(4,0)$ where it jumps from A to B).

Fun in different bases

Example 152. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer applications.

For instance, in JavaScript or Python, 0b... means $(\ldots)_{2}, 00 \ldots$ means $(\ldots)_{8}$, and $0 x \ldots$ means $(\ldots)_{16}$.
The digits $0,1, \ldots, 15$ in hexadecimal are typically written as $0,1, \ldots, 9, A, B, C, D, E, F$.
Example. FACE value in decimal? $(F A C E)_{16}=15 \cdot 16^{3}+10 \cdot 16^{2}+12 \cdot 16+14=64206$
Practical example. chmod 664 file.tex (change file permission)
664 are octal digits, consisting of three bits: $1=(001)_{2}$ execute $(x), 2=(010)_{2}$ write $(w), 4=(100)_{2}$ read (r) Hence, 664 means rw,rw,r. What is rwx,rx,-? 750
By the way, a fourth (leading) digit can be specified (setting the flags: setuid, setgid, and sticky).

Example 153. (terrible jokes, parental guidance advised)

There are 10 types of people... those who understand binary, and those who don't.
Of course, you knew that. How about:
There are II types of people... those who understand Roman numerals, and those who don't.
It's not getting any better:
There are 10 types of people... those who understand hexadecimal, F the rest...
Example 154. (yet another joke) Why do mathematicians confuse Halloween and Christmas?
Because 31 Oct $=25 \mathrm{Dec}$.
Get it? $(31)_{8}=1+3 \cdot 8=25$ equals $(25)_{10}=25$.
Fun borrowed from: https://en.wikipedia.org/wiki/Mathematical_joke

Excursion: A glance at numerical instability

Example 155. Recall that the quadratic equation $a x^{2}+b x+c=0$ has up to two solutions, which are given by $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Let us apply this formula to the example $\left(x-10^{6}\right)\left(x-10^{-10}\right)=x^{2}-\left(10^{6}+10^{-10}\right) x+10^{-4}$.

```
>>> b, c = -10**6-10**-10, 10**-4
>>>(-b +(b**2 - 4*c)**(1/2))/2
```

1000000.0

```
>>> (-b - (b**2 - 4*c)**(1/2))/2
```

 1.1641532182693481e-10
 Observe how the first root is computed correctly but the second root has a relative error of 0.164 (i.e. a percentage error of 16.4%). The reason for this large error is that the $-b$ and the $\sqrt{b^{2}-4 a c}$ are very close to each other so that subtracting them results in a loss of precision. In this example, we can avoid this loss of significant digits by observing that

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{b^{2}-\left(b^{2}-4 a c\right)}{2 a\left(-b \mp \sqrt{b^{2}-4 a c}\right)}=\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}} .
$$

Indeed, using the right-hand side instead, we get the following:

```
>>> -2*c / (b + (b**2-4*c)**(1/2))
```

858993.4592

```
>>> -2*c / (b - (b**2-4*c)**(1/2))
```

1e-10
Now, the first root has a large relative error (explain why!) but the second root is computed correctly. In the case $b<0$, we can therefore compute both roots without numerical issues by using $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ as well as $\frac{-2 c}{b-\sqrt{b^{2}-4 a c}}$ (instead of $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$).

Comment. Make sure you see how this avoids in both cases the issue of subtracting numbers that are close to

 each other.