Runge-Kutta methods

The midpoint method can be written as:

$$
\begin{aligned}
x_{n+1} & =x_{n}+h \\
y_{n+1} & =y_{n}+K_{1} h \\
K_{0} & =f\left(x_{n}, y_{n}\right) \\
K_{1} & =f\left(x_{n}+\frac{h}{2}, y_{n}+K_{0} \frac{h}{2}\right)
\end{aligned}
$$

Note that replacing the rule by $y_{n+1}=y_{n}+K_{0} h$ results in Euler's method. Indeed, both K_{0} and K_{1} are approximations of the slope y^{\prime} that we need for stepping from x_{n} to $x_{n+1}=x_{n}+h$.
Adding further such approximations K_{i} to the mix, one can eliminate further terms in the error expansion and obtain higher order methods known as Runge-Kutta methods.
The midpoint method is an example of a Runge-Kutta method of order 2 (but there are others as well).
https://en.wikipedia.org/wiki/Runge\�\�\�Kutta_methods
Of particular practical importance is the following instance:

(Runge-Kutta method of order 4)

$$
\begin{aligned}
x_{n+1} & =x_{n}+h \\
y_{n+1} & =y_{n}+\frac{1}{6}\left(K_{0}+2 K_{1}+2 K_{2}+K_{3}\right) h \\
K_{0} & =f\left(x_{n}, y_{n}\right) \\
K_{1} & =f\left(x_{n}+\frac{h}{2}, y_{n}+K_{0} \frac{h}{2}\right) \\
K_{2} & =f\left(x_{n}+\frac{h}{2}, y_{n}+K_{1} \frac{h}{2}\right) \\
K_{3} & =f\left(x_{n}+h, y_{n}+K_{2} h\right)
\end{aligned}
$$

Comment. Note how each of $K_{0}, K_{1}, K_{2}, K_{3}$ is an approximation of y^{\prime} on the interval $\left[x_{n}, x_{n+1}\right.$] (with K_{0} approximating $y^{\prime}\left(x_{n}\right)$ and K_{3} approximating $y^{\prime}\left(x_{n+1}\right)$). By taking the appropriate weighted average, we are able to get an approximation with a higher order.
Advanced comment. Note that the weights (with K_{1} and K_{2} combined because they both correspond to the midpoint $x_{n}+h / 2$) are the same as in Simpson's rule for numerical integration. That is more than a coincidence. Indeed, if $f(x, y)=f(x)$ does not depend on y, then solving the DE is equivalent to integrating $f(x)$ and the Runge-Kutta method of order 4 turns into Simpson's rule.

Example 147. Python Let us implement the Runge-Kutta method of order 4.

```
>>> def runge_kutta4(f, x0, y0, xmax, n):
    h = (xmax - x0) / n
    ypoints = [y0]
    for i in range(n):
        KO = f(x0,y0)
        K1 = f(x0+h/2, y0+K0*h/2)
        K2 = f(x0+h/2, y0+K1*h/2)
        K3 = f(x0+h, y0+K2*h)
        yO = y0 + (K0 + 2*K1 + 2*K2 + K3)*h/6
        x0 = x0 + h
        ypoints.append(y0)
    return ypoints
```

First, for comparison with earlier methods, let us apply the method to the IVP $y^{\prime}=y, y(0)=1$, which has the exact solution $y(x)=e^{x}$ with $y(1)=e \approx 2.718$.

```
>>> def f_y(x, y):
        return y
>>> runge_kutta4(f_y, 0, 1, 1, 4)
```

[1, 1.2840169270833333, 1.648699469036526, 2.1169580259162033, 2.718209939201323]
The following convincingly illustrates that the error is indeed $O\left(h^{4}\right)$.

```
>>> from math import e
>>> [runge_kutta4(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]
    [-0.009948495125712054, -2.0843238792700447e-06, -2.2464119453502462e-10, -
    2.042810365310288e-14, 1.1546319456101628e-14, 6.217248937900877e-15]
```

Pause for a moment to really appreciate how much better these errors are in comparison with Euler's method! Whereas computing 10^{5} values with Euler's method resulted in an error of $1.36 \cdot 10^{-5}$, we are now able to obtain an error of $2.04 \cdot 10^{-14}$ with only 10^{3} values.

As a second example, let us consider as in Example 144 the IVP $y^{\prime}=\cos (x) y$ with $y(0)=1$, which has the exact solution $y(x)=e^{\sin (x)}$ with $y(2)=e^{\sin (2)} \approx 2.48258$.

```
>>> def f_cosx_y(x, y):
        return cos(x)*y
>>> runge_kutta4(f_cosx_y, 0, 1, 2, 4)
```

 [1, 1.614859377441316, 2.3191895982789603, 2.7107641474177457, 2.481902218021582]
 The following again convincingly illustrates that the error is indeed $O\left(h^{4}\right)$.

```
>>> from math import e
>>> [runge_kutta4(f_cosx_y, 0, 1, 2, 10**n)[-1] - e**sin(2) for n in range(5)]
    [-0.12999578105593113, -1.726387102785054e-05, -1.6494263732624859e-09, -
    1.6431300764452317e-13, 3.419486915845482e-13]
```

Important comment. Note that, in contrast to Example 144, we did not have to compute partial derivatives of $f(x, y)=\cos (x) y$ by hand. Instead, we were able to simply use $\cos (x) y$ in our runge_kutta4 function.

A glance at discretizing PDEs

One of the most important partial differential equations is the following Laplace equation which, for instance, models the steady-state temperature $u(x, y)$ of a region in two-dimensional space.

(Laplace equation)

$$
u_{x x}+u_{y y}=0
$$

Comment. Here, for instance, $u_{x x}=\frac{\partial^{2}}{\partial x^{2}} u(x, y)$ is used to denote two partial derivatives with respect to x.
Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the "potential equation"; satisfied by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function $f(x, y)$ is the vector field $\boldsymbol{F}=\operatorname{grad} f=\nabla f=\left[\begin{array}{c}f_{x}(x, y) \\ f_{y}(x, y)\end{array}\right]$. One says that \boldsymbol{F} is a gradient field and f is a potential function for \boldsymbol{F} (for instance, \boldsymbol{F} could be a gravitational field with gravitational potential f).
The divergence of a vector field $\boldsymbol{G}=\left[\begin{array}{l}g(x, y) \\ h(x, y)\end{array}\right]$ is $\operatorname{div} \boldsymbol{G}=g_{x}+h_{y}$. One also writes $\operatorname{div} \boldsymbol{G}=\nabla \cdot \boldsymbol{G}$.
The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation $\Delta f=0$. Other notations. $\Delta f=\operatorname{div} \operatorname{grad} f=\nabla \cdot \nabla f=\nabla^{2} f$
Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the boundary of a region $R \subseteq \mathbb{R}^{2}$ (or $R \subseteq \mathbb{R}^{3}$ in the 3D case).
Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation $u_{x x}+$ $u_{y y}=f(x, y)$, the inhomogeneous version of the Laplace equation.

One way to describe a unique solution to the Laplace equation is by specifying the values of $u(x, y)$ along the boundary of a region. This is called a Dirichlet problem:

(Dirichlet problem)
 $u_{x x}+u_{y y}=0$ within region R
 $u(x, y)=f(x, y)$ on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values on the boundary of that region ("Dirichlet boundary conditions').

Discretizing the Laplace operator

Recall from Example 115 that the following central difference is an order 2 approximation of $f^{\prime \prime}(x)$.

$$
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)] .
$$

Example 148. (discretizing $\boldsymbol{\Delta}$) Use the above central difference approximation for second derivatives to derive a finite difference for $\Delta u=u_{x x}+u_{y y}$ in 2D.
Solution. $\Delta u \approx \frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]$
Notation. This finite difference is typically represented as $\frac{1}{h^{2}}\left[\begin{array}{ccc}1 & \\ 1 & -4 & 1 \\ 1 & \end{array}\right]$, the five-point stencil.
Comment. Recall that solutions to $\Delta u=0$ are supposed to describe steady-state temperature distributions. We can see from our discretization that this is reasonable. Namely, $\Delta u=0$ becomes approximately equivalent to

$$
u(x, y)=\frac{1}{4}(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)) .
$$

In other words, the temperature $u(x, y)$ at a point (x, y) should be the average of the temperatures of its four "neighbors" $u(x+h, y)$ (right), $u(x-h, y)$ (left), $u(x, y+h)$ (top), $u(x, y-h)$ (bottom).
Comment. Think about how to use this finite difference to numerically solve the corresponding Dirichlet problem by discretizing (one equation per lattice point).

