
Notes for Lecture 15 Mon, 10/23/2023

Example 103. Suppose we approximate sin(x) on [¡1; 1] by a polynomial interpolation.

(a) Give an upper bound for the maximal error if we use 5 Chebyshev nodes.

(b) How many Chebyshev nodes do we need to use in order to guarantee that the maximal
error is at most 10¡16?

Solution. In the case f(x)= sin(x) we know that jf (n)(x)j6 1 for all x2 [¡1; 1] and all n.
Therefore, by Theorem 98, using n Chebyshev nodes for the interpolation Pn¡1(x), the error is bounded as

max
x2[¡;1;1]

jf(x)¡Pn¡1(x)j6 1

2n¡1n!
max

�2[¡;1;1]
jf (n)(�)j6 1

2n¡1n!
.

(a) With n=5 nodes, this upper bound becomes 1

24 � 5! =
1

16 � 120 =
1

1920
� 0.00052.

(b) We need to choose n so that 1

2n¡1n!
6 10¡16 or, equivalently, 2n¡1 n!> 1016. We compute 2n¡1 n!

for n= 1; 2; ::: and find that this first happens when n= 15 (see the next Python example). Thus, for
n= 15 Chebyshev nodes the maximal error is guaranteed to be no more than 10¡16.

Comment. Recall that double precision floats have a precision of slightly less than 16 decimal digits. Thus we
could, in theory, implement an accurate sin(x) function by using a degree 14 polynomial (or even lower degree
if we take symmetry into account).

Advanced comment. Note that some care is required to translate this result into practice. For instance, if we
proceed as in Example 93 then the resulting maximal error using 15 Chebyshev nodes turns out to be about
4.7 � 10¡11, which is considerably larger than 10¡16 (even if we take into account that we are limited by using
double precision floats). The cause for this is that the function interpolate.lagrange does not compute the
interpolating polynomial accurately to full precision. Indeed, in the documentation for that function, we find the
following statement: Warning: This implementation is numerically unstable. Do not expect to be able to use
more than about 20 points even if they are chosen optimally.

Example 104. Python A function for computing n! is available in the Python math library (as
well as in numpy and scipy). However, here is a possible quick implementation from scratch:

>>> def factorial(n):
f = 1
for k in range(1,n+1):

f = f*k
return f

>>> factorial(3)

6

For the computation in the previous example, we now increase n until 2n¡1n!> 1016.
>>> n = 1

>>> while 2**(n-1) * factorial(n) < 10**16:
n = n+1

>>> n

15

>>> 2**(n-1) * factorial(n)

21424936845312000

>>> 2.**(n-1) * factorial(n)

2.1424936845312e+16

Armin Straub
straub@southalabama.edu

62

(Cubic) splines: piecewise polynomial interpolation

If, given data points (x0; y0); :::; (xn; yn) (also called knots) with x0<x1<:::<xn, we connect
them via straight lines, then we obtain what is called a linear spline. This linear spline interpolates
the given points but it is not a polynomial; instead it is a piecewise polynomial (namely, in this
case, it is a line on each segment [xi; xi+1]).
A problematic feature of linear splines is their lack of smoothness. Between each linear piece, we usually have a
sharp corner at which the spline is not differentiable.
Cn smooth. We say that a function is Cn smooth if its nth derivative exists and is continuous.
For instance, linear splines are C0 (continuous) but not C1 (unless the spline is a single line).

Of particular practical importance are cubic splines which are piecewise polynomials where each
piece is a polynomial of degree 3 (or less).

On each segment [xi; xi+1], we therefore have 4 degrees of freedom (coming from the 4 coefficients of a cubic
polynomial). We need 2 of these to interpolate at the two endpoints. This leaves us with 4 ¡ 2 = 2 degrees
of freedom which we can use to achieve smoothness. This allows us to demand that the first and the second
derivative agree with the neighboring pieces. Thus the resulting spline will be C2 smooth.

A cubic spline S(x) through (x0; y0); :::; (xn; yn) with x0<x1< ::: < xn is piecewise defined
by n cubic polynomials S1(x); :::; Sn(x) such that S(x)=Si(x) for x2 [xi¡1; xi]. Moreover:

� S(x) interpolates the given points.

This means that Si(xi¡1)= yi¡1 and Si(xi)= yi for i2f1; :::; ng. (2n equations)

� S(x) is C2 smooth (i.e. it has a continuous second derivative).

This means that Si
0(xi)=Si+1

0 (xi) and Si
00(xi)=Si+1

00 (xi) for i2f1; :::; n¡ 1g. (2n¡ 2 equations)

Note that there are 4n degrees of freedom for such a spline S(x), while we only have 2n +
(2n ¡ 2) = 4n ¡ 2 equations. To define a unique spline, we therefore need to impose 2 more
constraints. These are usually chosen as boundary conditions.

The following are common choices for the boundary conditions of cubic splines:

� natural: S100(x0)=Sn
00(xn)= 0

The resulting splines are simply called natural cubic splines.

� not-a-knot: S1000(x1)=S2
000(x1) and Sn000(xn¡1)=Sn¡1

000 (xn¡1)

� periodic: S10(x0)=Sn
0 (xn) and S100(x0)=Sn

00(xn) (only makes sense if y0= yn)

There are other common choices such clamped cubic splines for which the first derivatives at the endpoints
are being set (�clamped�) to user-specified values.

Comment. The name �natural� comes from the fact that the resulting spline is what one gets if one pins thin
(idealized) elastic strips in the position of the given knots.
Comment. The �not-a-knot� condition has the consequence that S1 = S2 and Sn = Sn¡1 (because cubic
polynomials must be equal if they agree up to the third derivative at a point). Hence x1 and xn¡1 are no longer
�knots� between separate polynomials.

Armin Straub
straub@southalabama.edu

63

As illustrated in the next example, we can compute splines (with 2 boundary conditions) by spelling
out the 4n defining equations. We can then solve the resulting linear equations using linear algebra.
There are, of course, various clever observations that make this approach more efficient. However,
since we have other sights to see on our journey, we will not get into these aspects.

Review. By Taylor's theorem (Theorem 52), applied to a function f(x) around x= x0, we have

f(x)= f(x0)+ f 0(x0)(x¡x0)+ ���+
f (n)(x0)

n!
(x¡ x0)n

nth Taylor polynomial

+
f (n+1)(�)
(n+1)!

(x¡ x0)n+1

error

:

If f(x) is a polynomial of degree n, then f (n+1)(x)= 0 so that f(x) is equal to its nth Taylor polynomial. In
particular, if f(x) is a cubic polynomial then, for any x0,

f(x)= a(x¡x0)3+ b(x¡ x0)2+ c(x¡ x0)+ d;

with a= 1

6
f (3)(x0), b=

1

2
f (2)(x0), c= f 0(x0) and d= f(x0).

Example 105. Determine the natural cubic spline through (¡1; 2), (1; 0), (2; 5).
Solution. Let us write the spline as S(x)=

�
S1(x); if x2 [¡1; 1];
S2(x); if x2 [1; 2]:

To simplify our life, we expand both Si around x=1 (the middle knot).

Si(x)= ai(x¡ 1)3+ bi(x¡ 1)2+ ci(x¡ 1)+ di:

� As noted in the review above, di=Si(1), ci=Si
0(1) and bi=

1

2
Si
00(1). Because S(x) is C2 smooth, we

have b1= b2, c1= c2 and d1= d2. We simply write b, c and d for these values in the sequel.

� d=0 because S1(1)=S2(1)= 0.

� S(x) further interpolates the other two points, (¡1;2) and (2;5), resulting in the following two equations:

S1(¡1) = ¡8a1+4b¡ 2c =2

S2(2) = a2+ b+ c =5

� The natural boundary conditions provide two more equations: (Note that Si00(x)= 6ai(x¡ 1)+ 2bi.)

S1
00(¡1) = ¡12a1+2b=0

S2
00(2) = 6a2+2b=0

We use these last two equations to replace a1=
1

6
b and a2=¡1

3
b in the other two equations in terms of b:

¡8 � 1
6
b+4b¡ 2c =

8
3
b¡ 2c=2

¡1
3
b+ b+ c =

2
3
b+ c=5

Solving these two equations in two unknowns, we find b=3 and c=3.

Consequently, a1=
1

6
b=

1

2
and a2=¡

1

3
b=¡1.

Hence, the desired natural cubic spline is

S(x)= 3(x¡ 1)+ 3(x¡ 1)2+(x¡ 1)3
(

1

2
; if x2 [¡1; 1];
¡1; if x2 [1; 2]:

Armin Straub
straub@southalabama.edu

64

