
Notes for Lecture 10 Wed, 9/27/2023

Applying fixed-point iteration directly

Note that any equation f(x)=0 can be rewritten in many ways as a fixed-point equation g(x)=x.
For instance. We can always rewrite f(x)= 0 as f(x)+ x=x (i.e. choose g(x)= f(x)+x).

We can then attempt to find a root x� of f(x) by fixed-point iteration on g(x).
In other words, we start with a value x0 (an initial approximation) and then compute x1;x2; ::: via xn+1= g(xn).

Theorem 65 tells us whether that such a fixed-point iteration on g(x) will locally converge to x�.
Moreover, it tells us the order of convergence.

Example 68. Suppose we are interested in computing the roots of x2¡x¡ 1=0.
The roots are the golden ratio �= 1

2
(1+ 5

p
)� 1.618 and = 1

2
(1¡ 5

p
)�¡0.618.

There are many ways to rewrite this equation as a fixed-point equation g(x) = x. The following
are three possibilities:

(a) Rewrite as x=x2¡ 1, so that g(x)=x2¡ 1.

(b) Rewrite first as x2=x+1 and then as x=1+ 1

x
, so that g(x)= 1+ 1

x
.

(c) Rewrite first as x2¡x
=x(x¡1)

=1 and then as x= 1

x¡ 1 , so that g(x)= 1

x¡ 1 .

In each of these three cases and for each root, decide whether fixed-point iteration converges. If
it does, determine the order and rate of convergence.
Solution.

(a) In this case, we have g(x)=x2¡ 1 and g0(x)= 2x.
Since jg 0(�)j � 3.236> 1 as well as jg0()j � 1.236> 1, fixed-point iteration does not converge locally
to either root.

(b) In this case, we have g(x)= 1+
1

x
and g 0(x)=¡ 1

x2
.

Since jg0(�)j= 1

�+1
�0.382<1 and jg 0()j= �+1�2.618>1, fixed-point iteration converges locally

to � but does not converge locally to . Moreover, the convergence to � is linear with rate 0.382.

(c) In this case, we have g(x)= 1

x¡ 1 and g0(x)=¡ 1

(x¡ 1)2 .

Since jg0(�)j= �+1�2.618>1 and jg 0()j= 1

�+1
�0.382<1, fixed-point iteration converges locally

to but does not converge locally to �. Moreover, the convergence to is linear with rate 0.382.

Armin Straub
straub@southalabama.edu

35

Order of convergence of Newton's method

Recall that computing a root x� of f(x) using Newton's method is equivalent to fixed-point

iteration of g(x)=x¡ f(x)

f 0(x)
.

Comment. In each case, we start with x0 and iteratively compute xn+1=xn¡
f(xn)

f 0(xn)
.

Theorem 69. Suppose that f is twice continuously differentiable and f(x�)= 0.

� (typical case) Newton's method (locally) converges to x� quadratically with rate
1

2
jf 00(x�)/f 0(x�)j provided that f 0(x�)=/ 0.

� (troubled case) If f 0(x�) = 0, then Newton's method either does not converge at all
or it converges linearly.

Note that, if f(x�)=0 and f 0(x�)=0, then x� is a repeated root of f(x). We thus conclude that Newton's
method is troubled if we are trying to compute a repeated root.

� (exceptionally good case) If f 0(x�)=/ 0 and f 00(x�)=0, then Newton's method even
converges with order at least 3.

Important comment. In short, Newton's method typically converges quadratically (though in very special cases
it can converge even faster) except in the case of repeated roots.

Proof. We apply Theorem 65 to analyze the fixed-point iteration of g(x)= x¡ f(x)
f 0(x)

.

Using the quotient rule we compute that

g 0(x)= 1¡ f 0(x)f 0(x)¡ f(x)f 00(x)
f 0(x)2

=
f(x)f 00(x)
f 0(x)2

:

If f(x�) = 0 and f 0(x�) =/ 0, then we have g 0(x�) = 0. By Theorem 65 this implies that fixed-point iteration
converges at least quadratically.
To determine the rate of convergence, we further compute (again using the quotient and product rule) that

g 00(x)=
(f 0(x)f 00(x)+ f(x)f 000(x))f 0(x)2¡ 2f(x)f 00(x)f 0(x)f 00(x)

f 0(x)4
:

From this (unsimplified) expression and f(x�)= 0 we conclude that g00(x�)= f 00(x�)
f 0(x�)

.

By Theorem 65 this implies that the convergence is quadratic with rate 1
2

��������f 00(x�)f 0(x�)

��������.
Moreover, if f 00(x�)= 0 then g00(x�)= 0 so that the convergence is cubic (or higher). �

Example 70. (cont'd) Does Newton's method applied to finding a root of f(x)=x3¡2 converge
locally to 23

p
? If so, determine the order and the rate.

This is a continuation of Examples 60 and 67.

Solution. Recall that Newton's method typically converges to x� with order 2 and rate 1

2

������f 00(x�)
f 0(x�)

������.
With x�= 23p , we compute f 0(x�)=3(x�)2=3 �22/3. Since f 0(x�)=/ 0, we already know that Newton's method
converges at least with order 2.
We further compute f 00(x�)=6x�=6 � 21/3=3 �24/3. Since f 00(x�)=/ 0, we know that Newton's method does
not converge with order larger than 2.

Therefore, Newton's method converges to x�= 23p with order 2 and rate 1
2

������f 00(x�)
f 0(x�)

������= 1

2

3 � 24/3

3 � 22/3
=2¡1/3�0.7937.

Of course, this matches what we computed in Example 67.

Armin Straub
straub@southalabama.edu

36

Example 71. f(x) = e¡x ¡ x has the unique root x� � 0.567. Determine whether Newton's
method converges locally to x�. If it does, what is the order and rate of convergence?
Solution. We compute that f 0(x)=¡e¡x¡ 1 and f 00(x)= e¡x.

Since x�= e¡x
�
, we have f 0(x�)=¡x�¡ 1=/ 0.

Hence, by Theorem 69, Newton's method converges to x� quadratically.

Moreover, the rate is 1
2

������f 00(x�)
f 0(x�)

������= 1

2

������ e¡x
�

¡e¡x�¡ 1

������= 1

2

������ x�

¡x�¡ 1

������� 0.181.

Review. If f(x�)=0 and f 0(x�)=/ 0, then Newton's method (locally) converges to x� quadrat-

ically with rate 1

2
jf 00(x�)/f 0(x�)j.

Note that we can see from here that f 0(x�) = 0 is problematic; indeed, in that case, we don't get quadratic
convergence (but rather divergence or linear convergence).
We can also see that, if f 00(x�) = 0, then we should get even better convergence; indeed, in that case, we get
cubic convergence or better.

Example 72. Consider f(x)=(x¡ r)(x¡1)(x+2) where r is some constant. Suppose we want
to use Newton's method to calculate the root x�=1.

(a) For which values of r is Newton's method guaranteed to converge (at least) quadratically
to x�=1?

(b) Analyze the cases in which Newton's method does not converge quadratically to x�= 1.
Does it still converge? If so, what can we say about the order and rate of convergence?

(c) For which values of r does Newton's method converge to x�=1 faster than quadratically?

Solution.

(a) We have f(x)=x3¡ (r¡ 1)x2¡ (r+2)x+2r and, hence, f 0(x)= 3x2¡ 2(r¡ 1)x¡ (r+2).
Note that f 0(1)=3¡ 3r=0 if and only if r=1.
Theorem 69 implies that Newton's method converges (at least) quadratically to x�=1 if r=/ 1.
Comment. Note that r=1 is precisely the case where 1 becomes a double root of f(x).

(b) We need to analyze the case r=1.
In that case f(x)= (x¡ 1)2(x+2) and f 0(x)= 3x2¡ 3=3(x¡ 1)(x+1).
Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ (x¡ 1)2(x+2)
3(x¡ 1)(x+1)

= x¡ x2+ x¡ 2
3(x+1)

=
2
3
x+

2
3

1
x+1

:

We compute that g 0(x)= 2

3
¡ 2

3

1

(x+1)2
so that, in particular, g 0(1)= 2

3
¡ 2

3

1

4
=
1

2
.

Since 0=/ jg 0(1)j< 1 we conclude, by Theorem 65, that Newton's method (locally) converges to x�=1.
Moreover, the convergence is linear with rate 1

2
.

Comment. Since 1

2
=2¡1, this means that we gain roughly one correct binary digit per iteration.

(c) We continue the calculation from the first part. According to Theorem 69, Newton's method converges
to 1 faster than quadratic if f 0(1)=/ 0 and f 00(1)= 0.
We calculate f 00(x)= 6x¡ 2(r¡ 1). Thus f 00(1)=8¡ 2r=0 if and only if r=4.
Hence, Newton's method converges to 1 faster than quadratic if r=4.

Important comment. Note that what we are observing is exactly as what we should expect: Newton's method
typically converges quadratically (though in very special cases it can converge even faster; here, r=4) except in
the case of repeated roots (here, r=1).

Armin Straub
straub@southalabama.edu

37

Example 73. Python The following code implements the Newton method specifically for com-
puting a root of f(x)= (x¡ r)(x¡ 1)(x+2) as in the previous example.

>>> def newton_f(r, x, nr_steps):
for i in range(nr_steps):

x = x - ((x-r)*(x-1)*(x+2))/(3*x**2-2*(r-1)*x-r-2)
return x

We then write a function to tell us the how close the result of Newton's method is to x�=1 (the
root that we are trying to compute). Namely, newton_f_cb_1 will return the number of correct
digits in base 2.
>>> from math import log2

>>> def newton_f_cb_1(r, x, nr_steps):
return -log2(abs(1 - newton_f(r, x, nr_steps)))

Here is the typical behaviour which we get if r=/ 1 and r=/ 4. We chose r=2 and for the initial
approximation we chose x0= 0.4. First, we list the result of Newton's method and observe that
the approximations are indeed approaching 1 (recall that we are only guaranteed convergence if
x0 is close enough to 1). We then list the number of correct bits for those approximations:

>>> [newton_f(2, 0.4, n) for n in range(1,5)]

[0.9333333333333332, 0.9974499089253187, 0.9999956903710115, 0.9999999999876182]

>>> [newton_f_cb_1(2, 0.4, n) for n in range(1,5)]

[3.9068905956085165, 8.615235511834927, 17.824004894803025, 36.2329923774517]

Observe how the number of correct digits indeed roughly doubles.

Next, we likewise consider the problematic case r=1:
>>> [newton_f(1, 0.4, n) for n in range(1,5)]

[0.7428571428571429, 0.877751756440281, 0.9402023433223725, 0.9704083354780979]

>>> [newton_f_cb_1(1, 0.4, n) for n in range(1,5)]

[1.9593580155026542, 3.032114357937968, 4.063767239896592, 5.078665339814252]

Observe how the number of correct digits no longer doubles. Instead it roughly increases by 1 per
iteration, exactly as we had predicted.

Finally, we consider the exceptionally good case r=4:
>>> [newton_f(4, 0.4, n) for n in range(1,5)]

[1.0545454545454547, 0.9999639010889838, 1.0000000000000104, 1.0]

>>> [newton_f_cb_1(4, 0.4, n) for n in range(1,4)]

[4.1963972128035, 14.757685157968053, 46.445411148322364]

Observe how the number of correct digits now roughly triples, in accordance with our prediction.

Armin Straub
straub@southalabama.edu

38

Comparison of root finding algorithms

Now that we have seen several root finding algorithms, which one is the best?

Well, it really depends on the situation. Below are some of the differences between the methods.

In practice, one often uses hybrid algorithms that combine several methods.

All methods require a continuous function.

� Bisection
each iteration is guaranteed to provide a correct binary digit; no other method can guarantee this for
all functions
requires an initial interval containing a root such that the function values at the endpoints have opposite
signs (in particular, does not work for double roots (or any even order roots)); on the other hand, it
provides a guaranteed interval containing the root
no requirement on f(x) besides continuity; for the other methods, the performance depends on f(x)

essentially linear convergence with rate 1

2

� Regula falsi
also requires an initial interval containing a root like bisection
one endpoint of the interval typically gets stuck
rarely used directly, but rather in its improved forms, such as the Illinois method
always converges, typically linearly with variable rate

� Illinois method (see next pages for bonus material!)

improved version of regula falsi
the interval now shrinks to root
always converges, typically with order 33p � 1.442

� Secant method
only requires an initial approximation
only converges if initial approximation is good enough
potential numerical issues due to loss of precision in near zero denominator
typical order of convergence �=(1+ 5

p
)/2� 1.618

� Newton's method
similar to secant method
requires derivative
extends well to other contexts such as approximating functions or power series rather than numbers
typical order of convergence 2
however, adjusted for two function evaluations (f(x) and f 0(x)), order of convergence 2

p
� 1.414

Armin Straub
straub@southalabama.edu

39

Bonus material: The Illinois method

Example 74. Python In Example 39 we implemented the regula falsi method. As we have
observed, a weakness of this method is that we typically end up only updating one endpoint of the
interval. The Illinois algorithm is an extension of the regula falsi method that works to remedy
this issue.

Recall that the regula falsi method uses c= afb¡ bfa
fb¡ fa

with fa= f(a) and fb= f(b) to cut each

interval [a; b] into the two parts [a; c] and [c; b].
The Illinois algorithm proceeds likewise but, after an endpoint has been retained for a second
time, the corresponding value fa or fb is replaced with half its value. In other words, if a was not
updated in this or the previous step, then fa (to be used in the next iteration) is replaced with
fa/2; likewise, if b was not updated in this or the previous step, then fb is replaced with fb/2.

start with an interval [a,b]
fa = f(a)
fb = f(b)
repeat
compute the regula falsi point
c = (a*fb - b*fa) / (fb - fa)
fc = f(c)
set new interval [a,b] according to signs of f
...
if left endpoint was also updated the previous time
fb = fb/2

if right endpoint was also updated the previous time
fa = fa/2

Can you complete this pseudo-implementation? Here is one approach that we can take:

� Start with the code that we wrote in class for the regula falsi method.

� Adjust that code (like we did for the bisection method) to only use one function evaluation
per iteration. Do that by introducing variables fa, fb, fc for the values of f(x) at x=a;
b; c.

� Add a new variable to your code that keeps track of whether we most recently changed
the left or the right endpoint of the interval. You can, for instance, define a variable
updated_endpoint that is initially set to 0, and which is set to 1 after the right endpoint
is updated and to ¡1 after the left endpoint is updated.
That way, if we are about to update, say, the left endpoint, then we can test whether
updated_endpoint is ¡1 as that would tell us that we are now updating the left endpoint
for a second time in a row. In that case, we set fb = fb/2.

Advanced comment. There are other, more clever, approaches to implementing the Illinois method. For instance,
one could stop making a and b the left and right endpoints of the interval and, instead, always make b the newly
added endpoint; then one can test whether we repeatedly change the same endpoint by looking at the signs of
the corresponding values of f . This is done by M. Dowell and P. Jarratt in [A Modified Regula Falsi Method
for Computing the Root of an Equation, 1971], where they describe and analyze the Illinois method. As a very
minor point, their implementation might proceed slightly different from ours because we start with an interval
[a; b] whereas their implementation thinks of a and b as two approximations, with b being the more �recent� one
(accordingly, their implementation might divide fa by 2 already at the end of the first iteration).

Armin Straub
straub@southalabama.edu

40

Let us revisit the computations we did in Example 38 but with the regula falsi method updated
to the Illinois algorithm. The first two iterations should result in the same intervals:

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> illinois(my_f, Fraction(1), Fraction(2), 1)

[Fraction(8, 7), Fraction(2, 1)]

>>> illinois(my_f, Fraction(1), Fraction(2), 2)

[Fraction(75, 62), Fraction(2, 1)]

However, at the end of the second iteration (since the right endpoint has not changed in this or
the previous iteration), fb= 6 (since f(2) = 6) is replaced with fb= 3. As a result, in the third
iteration, we end up replacing the right endpoint:

>>> illinois(my_f, Fraction(1), Fraction(2), 3)

[Fraction(75, 62), Fraction(974462, 769765)]

For further testing, in the next two iterations we replace the left endpoints (since the fractions
are becoming large, we are using floats below; note that the first command just repeats the above
computation with floats):

>>> illinois(my_f, 1, 2, 3)

[1.2096774193548387, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 4)

[1.2596760796087871, 1.2659214175754938]

>>> illinois(my_f, 1, 2, 5)

[1.2599198867703156, 1.2659214175754938]

Consequently, at the end of the fifth iteration, the value of fb (which is f(1.2659:::)) is again
replaced by half its value. Once more, this results in b being updated in the next iteration:

>>> illinois(my_f, 1, 2, 6)

[1.2599198867703156, 1.2599222015292841]

Armin Straub
straub@southalabama.edu

41

