Notes for Lecture 9

Review. If f(x) is analytic around x = c, then it equals its **Taylor series** of f(x) at x = c:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \frac{1}{2}f''(c)(x-c)^2 + \dots$$

Fixed-point iteration

Definition 55. x^* is a **fixed point** of a function f(x) if $f(x^*) = x^*$.

Example 56. Determine all fixed points of the function $f(x) = x^3$.

Solution. $x^3 = x$ has the three solutions $x^* = 0, \pm 1$ (and a cubic equation cannot have more than 3 solutions). These are the fixed points.

Idea. Suppose x^* is a fixed point of a continuous function f. If $x_n \approx x^*$, then $f(x_n) \approx f(x^*) = x^* \approx x_n$. If we can guarantee that $f(x_n)$ is closer to x^* than x_n , then we can set

$$x_{n+1} = f(x_n),$$

with the expectation that iterating this process will bring us closer and closer to x^* .

When does this converge? This process converges if $|f(x_n) - x^*| < |x_n - x^*|$ for all x_n close to x^* . This condition is equivalent to $\left|\frac{f(x_n) - x^*}{x_n - x^*}\right| < 1$. Since $x^* = f(x^*)$, we have $\frac{f(x_n) - x^*}{x_n - x^*} = \frac{f(x_n) - f(x^*)}{x_n - x^*} \approx f'(x^*)$ provided that x_n is sufficiently close to x^* . This essentially proves the following result. (See below for a full proof using the mean value theorem.)

Theorem 57. Suppose that x^* is a fixed point of a continuously differentiable function f. If $|f'(x^*)| < 1$, then fixed-point iteration

 $x_{n+1} = f(x_n), \quad x_0 = \text{initial approximation},$

converges to x^* locally.

In that case, we say that x^* is an attracting fixed point.

Divergence. If $|f'(x^*)| > 1$, then x^* is a **repelling fixed point**. Our argument shows that fixed-point iteration will not converge to x^* except in the "freak" case where $x_n \not\approx x^*$ but $f(x_n) = x^*$.

Comment. Local convergence means that we have convergence for all initial values x_0 close enough to x^* . **Proof.** Note that

$$x_{n+1} - x^* = f(x_n) - f(x^*)$$

= $f'(\xi_n)(x_n - x^*)$

where we applied the mean value theorem for the second equation and where ξ_n is between x_n and x^* . Thus

$$|x_{n+1} - x^*| = |f'(\xi_n)| \cdot |x_n - x^*|$$

Since f' is continuous and $|f'(x^*)| < 1$, we have $|f'(x)| < \delta$ for some $\delta < 1$ for all x sufficiently close to x^* . If x_0 is sufficiently to x^* in that sense, then it follows that $|x_1 - x^*| < \delta \cdot |x_0 - x^*|$. In particular, x_1 is even closer to x^* and we can repeat this argument to conclude that $|x_{n+1} - x^*| < \delta \cdot |x_n - x^*|$ for all n. This implies that $|x_n - x^*| < \delta^n \cdot |x_0 - x^*|$. Since $\delta < 1$, this further implies that x_n converges to x^* .

Armin Straub straub@southalabama.edu **Example 58.** From a plot of cos(x), we can see that it has a unique fixed point x^* in the interval [0, 1]. Does fixed-point iteration converge locally to x^* ?

Solution. If $f(x) = \cos(x)$, then $f'(x) = -\sin(x)$. Since $|\sin(x)| < 1$ for all $x \in [0, 1]$, we conclude that $|f'(x^*)| < 1$. By Theorem 57, fixed-point iteration will therefore converge to x^* locally. **Comment.** We will continue this analysis in Example 66.

Example 59. Python Let us implement the fixed-point iteration of cos(x) from the previous example in Python.

```
>>> from math import cos
>>> def cos_iterate(x, n):
    for i in range(n):
        x = cos(x)
    return x
```

>>> [cos_iterate(1, n) for n in range(20)]

```
[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656, 0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605, 0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092, 0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561, 0.7387603198742113, 0.7393038923969059, 0.7389377567153445]
```

For comparison. The actual fixed point is $x^* \approx 0.7391$.

Comment. Instead of using a loop, we could also implement the above fixed-point iteration **recursively** in the following way (the recursive part is that the function is calling itself).

0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092, 0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561, 0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

Sometimes recursion results in cleaner code. However the use of loops is usually more efficient.

Newton's method as a fixed-point iteration

Recall that Newton's method for finding a root of f(x) proceeds from an initial approximation x_0 and iteratively computes

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Note that this is equivalent to fixed-point iteration of the function $g(x) = x - \frac{f(x)}{f'(x)}$.

Comment. Note that x^* is a fixed point of $g(x) = x - \frac{f(x)}{f'(x)}$ if and only if $\frac{f(x^*)}{f'(x^*)} = 0$.

We have already proven a criterion for convergence of fixed-point iterations (Theorem 57). Our next goal is to develop the tools to analyze the speed of that convergence.

Example 60.

- (a) Newton's method applied to finding a root of $f(x) = x^3 2$ is equivalent to fixed-point iteration of which function g(x)?
- (b) Determine whether Newton's method converges locally to $\sqrt[3]{2}$.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 2}{3x^2} = \frac{2}{3} \left(x + \frac{1}{x^2} \right)$$

(b) By Theorem 57, Newton's method converges locally to $x^* = \sqrt[3]{2}$ if $|g'(x^*)| < 1$. Since $g'(x) = \frac{2}{3} - \frac{4}{3x^3}$, we get $g'(x^*) = \frac{2}{3} - \frac{4}{3 \cdot 2} = 0$. Hence Newton's method converges locally to $\sqrt[3]{2}$. Important comment. Notice that $g'(x^*) = 0$ is, in a way, the strongest sense in which $|g'(x^*)| < 1$. We will see shortly that $g'(x^*) = 0$ implies especially fast convergence of the type we observed in Example 45.

Example 61. (homework)

- (a) What are the fixed points of $g(x) = \frac{x}{2} + \frac{1}{x}$?
- (b) Does fixed-point iteration of g(x) converge?
- (c) Find a function f(x) such that the fixed-point iteration of g(x) is equivalent to Newton's method applied to f(x).
- (d) Inspired by the previous parts, suggest a fixed-point iteration to compute square roots.

Solution.

(a) Solving $\frac{x}{2} + \frac{1}{x} = x$, we find $x^2 = 2$ and thus $x = \pm \sqrt{2}$. Comment. Note that $g(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$. Suppose that $x < \sqrt{2}$. Then $2/x > \sqrt{2}$.

When iterating g(x), we are averaging the underestimate and the overestimate, and it is reasonable to expect that the result is a better approximation.

- (b) Since $g'(x) = \frac{1}{2} \frac{1}{x^2}$, we have $g'(\pm\sqrt{2}) = \frac{1}{2} \frac{1}{2} = 0$. Hence, both fixed points are attracting fixed points. By Theorem 57, fixed-point iteration of g(x) converges locally to both fixed points.
- (c) We are looking for a function f(x) such that $x \frac{f(x)}{f'(x)} = g(x)$. Equivalently, $\frac{f'(x)}{f(x)} = \frac{1}{x g(x)} = \frac{2x}{x^2 2}$. This is a first-order differential equation which we can solve for f(x) using separation of variables or by realizing that it is a linear DE. (Our approach below is equivalent to separation of variables.) Note that $\frac{f'(x)}{f(x)} = \frac{d}{dx} \ln(f(x))$. Thus, integrating both sides of the DE,

$$\ln(f(x)) = \int \frac{1}{x - g(x)} dx = \int \frac{2x}{x^2 - 2} dx = \ln|x^2 - 2| + C.$$

We conclude that fixed-point iteration of g(x) is equivalent to Newton's method applied to $f(x) = x^2 - 2$. **Comment.** The general solution of the DE has one degree of freedom (the *C* above, which we chose as 0). On the other hand, we know from the beginning that Newton's method applied to f(x) and Df(x) results in the same fixed-point iteration.

(d) Newton's method applied to $f(x) = x^2 - a$ is equivalent to fixed-point iteration of $g(x) = \frac{1}{2}(x + \frac{a}{x})$. **Comment.** The resulting method for computing square roots \sqrt{a} is known as the **Babylonian method**. It consists of starting with an approximation $x_0 \approx \sqrt{a}$ and then iteratively computing $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$. https://en.wikipedia.org/wiki/Methods_of_computing_square_roots

Order of convergence

Example 62. Suppose that x_n converges to x^* in such a way that the number of correct digits doubles from one term to the next. What does that mean in terms of the error $e_n = |x_n - x^*|$?

Comment. This is roughly what we observed numerically for the Newton method in Example 45.

Comment. It doesn't matter which base we are using because the number of digits in one base is a fixed constant multiple of the number of digits in another base. Make sure that this clear! (If unsure, how does the number of digits of an integer x in base 2 relate to the number of digits of x in base 10?)

Solution. Recall that the number of correct digits in base *b* is about $-\log_b(e_n)$. Doubling these from one term to the next means that $-\log_b(e_{n+1}) \approx -2\log_b(e_n)$.

Equivalently, $\log_b(e_{n+1}) - 2\log_b(e_n) = \log_b\left(\frac{e_{n+1}}{e_n^2}\right) \approx 0.$ This in turn is equivalent to $\frac{e_{n+1}}{e^2} \approx 1.$

What if the number of correct digits triples? By the above arguments, we would have $\frac{e_{n+1}}{e_n^3} \approx 1$. Of course, there is nothing special about 2 or 3.

Example 63. Suppose that x_n converges to x^* . Let $e_n = |x_n - x^*|$ be the error and $d_n = -\log_b(e_n)$ be the number of correct digits (in base b). If $d_{n+1} = Ad_n + B$, what does that mean in terms of the error e_n ?

Solution. $-\log_b(e_{n+1}) = -A \log_b(e_n) + B$ is equivalent to $\log_b(e_{n+1}) - A \log_b(e_n) = \log_b\left(\frac{e_{n+1}}{e_n^A}\right) = -B$. This in turn is equivalent to $\frac{e_{n+1}}{e_n^A} = b^{-B}$.

This motivates the following definition.

Definition 64. Suppose that x_n converges to x^* . Let $e_n = |x_n - x^*|$. We say that x_n converges to x of order q and rate r if

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n^q} = r.$$

Order 1. Convergence of order 1 is called **linear convergence**. As in the previous example, the rate r provides information on the number of additional correct digits per term.

Order 2. Convergence of order 2 is also called **quadratic convergence**. As we saw above, it means that number of correct binary digits d_n roughly doubles from one term to the next. More precisely, $d_{n+1} \approx 2d_n + B$ where the rate $r = 2^{-B}$ tells us that $B = -\log_2(r)$. [Note that r has the advantage of being independent of the base in which we measure the number of correct digits.]

Order of convergence of fixed-point iteration

Theorem 65. Suppose that x^* is a fixed point of a sufficiently differentiable function f. Suppose that $|f'(x^*)| < 1$ so that, by Theorem 57, fixed-point iteration of f(x) converges to x^* locally. Then the convergence is of order M with rate $\frac{1}{M!}|f^{(M)}(x^*)|$ where $M \ge 1$ is the smallest integer so that $f^{(M)}(x^*) \ne 0$.

In particular.

- If $f'(x^*) \neq 0$, then the convergence is linear with rate $|f'(x^*)|$.
- If $f'(x^*) = 0$ and $f''(x^*) \neq 0$, then the convergence is quadratic with rate $\frac{1}{2}|f''(x^*)|$.

Comment. Here, sufficiently differentiable means that f needs to be M times continuously differentiable so that we can apply Taylor's theorem.

Proof. By Taylor's theorem (Theorem 52), if $f'(x^*) = f''(x^*) = \cdots = f^{(M-1)}(x^*) = 0$ for some $M \ge 1$, then

$$f(x) = f(x^*) + \frac{1}{M!} f^{(M)}(\xi) (x - x^*)^M$$

for some ξ between x and x^* . We use this with x replaced by x_n to conclude that

$$x_{n+1} - x^* = f(x_n) - f(x^*) = \frac{1}{M!} f^{(M)}(\xi_n) (x_n - x^*)^M$$

for some ξ_n between x_n and x^* .

Thus

$$\frac{x_{n+1}-x^*}{(x_n-x^*)^M} = \frac{1}{M!} f^{(M)}(\xi_n) \quad \xrightarrow[n \to \infty]{} \quad \frac{1}{M!} f^{(M)}(x^*),$$

where the limit follows from the continuity of $f^{(M)}(x)$ (and convergence of $x_n \rightarrow x^*$).

Example 66. (cont'd) From a plot of cos(x), we can see that it has a unique fixed point in the interval [0, 1]. Does fixed-point iteration converge locally? If so, determine the order and the rate.

This is a continuation of Example 58.

Solution. If $f(x) = \cos(x)$, then $f'(x) = -\sin(x)$. Since $|\sin(x)| < 1$ for all $x \in [0, 1]$, we conclude that $|f'(x^*)| < 1$. By Theorem 57, fixed-point iteration will therefore converge to x^* locally.

Since $x^* \approx 0.7391$, we have $|f'(x^*)| \approx |\sin(0.7391)| \approx 0.6736$.

Because $f'(x^*) \neq 0$, we conclude that the order of convergence is 1 and the rate is 0.6736.

Comment. A rate of 0.5 would mean that the number of correct digits increases by 1 for each iteration (and this is what the bisection method provides). Here, convergence is slightly slower.

Example 67. (cont'd)

- (a) Newton's method applied to finding a root of $f(x) = x^3 2$ is equivalent to fixed-point iteration of which function g(x)?
- (b) Does Newton's method converge locally to $\sqrt[3]{2}$? If so, determine the order and the rate.

This is a continuation of Example 60.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 2}{3x^2} = \frac{2}{3} \left(x + \frac{1}{x^2} \right).$$

(b) By Theorem 57, Newton's method converges locally to x* = ³√2 if |g'(x*)| < 1.
We compute that g'(x) = ²/₃ - ⁴/_{3x³} so that g'(x*) = ²/₃ - ⁴/_{3·2} = 0.
At this point, we know that Newton's method converges locally to ³√2.
Moreover, g''(x) = ⁴/_{x⁴} so that g''(x*) = ⁴/_{2^{4/3}} = 2^{2/3} ≈ 1.5874.
Hence, the order of convergence is 2 and the rate is ¹/₂|g''(x*)| ≈ 0.7937.
Comment. Since the rate is less than 1, the convergence is actually slightly better than a doubling of correct digits for each iteration.
Important. We will see shortly that it is typical for Newton's method to have convergence of order 2.