
Notes for Lecture 9 Mon, 9/25/2023

Review. If f(x) is analytic around x= c, then it equals its Taylor series of f(x) at x= c:

f(x) =
X
n=0

1
f (n)(c)
n!

(x¡ c)n= f(c)+ f 0(c)(x¡ c)+ 1
2
f 00(c)(x¡ c)2+ :::

Fixed-point iteration

Definition 55. x� is a fixed point of a function f(x) if f(x�)=x�.

Example 56. Determine all fixed points of the function f(x)=x3.
Solution. x3=x has the three solutions x�=0;�1 (and a cubic equation cannot have more than 3 solutions).
These are the fixed points.

Idea. Suppose x� is a fixed point of a continuous function f . If xn�x�, then f(xn)� f(x�)=
x��xn. If we can guarantee that f(xn) is closer to x� than xn, then we can set

xn+1= f(xn);

with the expectation that iterating this process will bring us closer and closer to x�.
When does this converge? This process converges if jf(xn)¡x�j< jxn¡ x�j for all xn close to x�.

This condition is equivalent to
������f(xn)¡x�
xn¡ x�

������< 1.
Since x�= f(x�), we have f(xn)¡ x�

xn¡x�
=
f(xn)¡ f(x�)

xn¡ x�
� f 0(x�) provided that xn is sufficiently close to x�.

This essentially proves the following result. (See below for a full proof using the mean value theorem.)

Theorem 57. Suppose that x� is a fixed point of a continuously differentiable function f . If
jf 0(x�)j< 1, then fixed-point iteration

xn+1= f(xn); x0= initial approximation;

converges to x� locally.
In that case, we say that x� is an attracting fixed point.
Divergence. If jf 0(x�)j>1, then x� is a repelling fixed point. Our argument shows that fixed-point iteration
will not converge to x� except in the �freak� case where xn�/ x� but f(xn)=x�.

Comment. Local convergence means that we have convergence for all initial values x0 close enough to x�.

Proof. Note that

xn+1¡x� = f(xn)¡ f(x�)
= f 0(�n)(xn¡ x�)

where we applied the mean value theorem for the second equation and where �n is between xn and x�. Thus

jxn+1¡x�j= jf 0(�n)j � jxn¡ x�j

Since f 0 is continuous and jf 0(x�)j< 1, we have jf 0(x)j<� for some � < 1 for all x sufficiently close to x�. If
x0 is sufficiently to x� in that sense, then it follows that jx1¡x�j<� � jx0¡x�j. In particular, x1 is even closer
to x� and we can repeat this argument to conclude that jxn+1¡x�j<� � jxn¡x�j for all n. This implies that
jxn¡ x�j<�n � jx0¡ x�j. Since � < 1, this further implies that xn converges to x�. �
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Example 58. From a plot of cos(x), we can see that it has a unique fixed point x� in the interval
[0; 1]. Does fixed-point iteration converge locally to x�?

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 57, fixed-point iteration will therefore converge to x� locally.
Comment. We will continue this analysis in Example 66.

Example 59. Python Let us implement the fixed-point iteration of cos(x) from the previous
example in Python.

>>> from math import cos

>>> def cos_iterate(x, n):
for i in range(n):

x = cos(x)
return x

>>> [cos_iterate(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

For comparison. The actual fixed point is x�� 0.7391.

Comment. Instead of using a loop, we could also implement the above fixed-point iteration recursively in the
following way (the recursive part is that the function is calling itself).

>>> def cos_iterate_recursively(x, n):
if n > 0:

return cos_iterate_recursively(cos(x), n-1)
return x

>>> [cos_iterate_recursively(1, n) for n in range(20)]

[1, 0.5403023058681398, 0.8575532158463934, 0.6542897904977791, 0.7934803587425656,
0.7013687736227565, 0.7639596829006542, 0.7221024250267077, 0.7504177617637605,
0.7314040424225098, 0.7442373549005569, 0.7356047404363474, 0.7414250866101092,
0.7375068905132428, 0.7401473355678757, 0.7383692041223232, 0.7395672022122561,
0.7387603198742113, 0.7393038923969059, 0.7389377567153445]

Sometimes recursion results in cleaner code. However the use of loops is usually more efficient.

Newton's method as a fixed-point iteration

Recall that Newton's method for finding a root of f(x) proceeds from an initial approximation
x0 and iteratively computes

xn+1=xn¡
f(xn)
f 0(xn)

:

Note that this is equivalent to fixed-point iteration of the function g(x)=x¡ f(x)

f 0(x)
.

Comment. Note that x� is a fixed point of g(x)=x¡ f(x)

f 0(x)
if and only if f(x�)

f 0(x�)
=0.

We have already proven a criterion for convergence of fixed-point iterations (Theorem 57). Our
next goal is to develop the tools to analyze the speed of that convergence.
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Example 60. (We will continue this analysis in Example 67.)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Determine whether Newton's method converges locally to 23
p

.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 57, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.
Since g 0(x)= 2

3
¡ 4

3x3
, we get g 0(x�)= 2

3
¡ 4

3 � 2 =0. Hence Newton's method converges locally to 23p .

Important comment. Notice that g 0(x�)=0 is, in a way, the strongest sense in which jg0(x�)j< 1. We
will see shortly that g0(x�)=0 implies especially fast convergence of the type we observed in Example 45.

Example 61. (homework)

(a) What are the fixed points of g(x)= x

2
+ 1

x
?

(b) Does fixed-point iteration of g(x) converge?

(c) Find a function f(x) such that the fixed-point iteration of g(x) is equivalent to Newton's
method applied to f(x).

(d) Inspired by the previous parts, suggest a fixed-point iteration to compute square roots.

Solution.

(a) Solving x

2
+

1

x
=x, we find x2=2 and thus x=� 2

p
.

Comment. Note that g(x)= 1

2

�
x+

2

x

�
. Suppose that x< 2

p
. Then 2/x> 2

p
.

When iterating g(x), we are averaging the underestimate and the overestimate, and it is reasonable to
expect that the result is a better approximation.

(b) Since g 0(x)= 1

2
¡ 1

x2
, we have g0(� 2

p
)=

1

2
¡ 1

2
=0. Hence, both fixed points are attracting fixed points.

By Theorem 57, fixed-point iteration of g(x) converges locally to both fixed points.

(c) We are looking for a function f(x) such that x¡ f(x)

f 0(x)
= g(x). Equivalently, f

0(x)

f(x)
=

1

x¡ g(x)
=

2x

x2¡ 2 .

This is a first-order differential equation which we can solve for f(x) using separation of variables or by
realizing that it is a linear DE. (Our approach below is equivalent to separation of variables.)

Note that f
0(x)

f(x)
=

d

dx
ln(f(x)). Thus, integrating both sides of the DE,

ln(f(x)) =

Z
1

x¡ g(x)dx=
Z

2x

x2¡ 2dx= lnjx2¡ 2j+C:

We conclude that fixed-point iteration of g(x) is equivalent to Newton's method applied to f(x)=x2¡2.
Comment. The general solution of the DE has one degree of freedom (the C above, which we chose as
0). On the other hand, we know from the beginning that Newton's method applied to f(x) and Df(x)
results in the same fixed-point iteration.

(d) Newton's method applied to f(x)=x2¡ a is equivalent to fixed-point iteration of g(x)= 1

2

¡
x+

a

x

�
.

Comment. The resulting method for computing square roots a
p

is known as the Babylonian method.

It consists of starting with an approximation x0� a
p

and then iteratively computing xn+1=
1

2

�
xn+

a

xn

�
.

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
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Order of convergence

Example 62. Suppose that xn converges to x� in such a way that the number of correct digits
doubles from one term to the next. What does that mean in terms of the error en= jxn¡x�j?
Comment. This is roughly what we observed numerically for the Newton method in Example 45.

Comment. It doesn't matter which base we are using because the number of digits in one base is a fixed constant
multiple of the number of digits in another base. Make sure that this clear! (If unsure, how does the number of
digits of an integer x in base 2 relate to the number of digits of x in base 10?)

Solution. Recall that the number of correct digits in base b is about ¡logb(en).
Doubling these from one term to the next means that ¡logb(en+1)�¡2logb(en).
Equivalently, logb(en+1)¡ 2logb(en)= logb

�
en+1

en
2

�
� 0.

This in turn is equivalent to en+1

en
2 � 1.

What if the number of correct digits triples? By the above arguments, we would have en+1

en
3 � 1.

Of course, there is nothing special about 2 or 3.

Example 63. Suppose that xn converges to x�. Let en = jxn ¡ x�j be the error and dn =
¡logb(en) be the number of correct digits (in base b). If dn+1=Adn+B, what does that mean
in terms of the error en?

Solution. ¡logb(en+1)=¡A logb(en)+B is equivalent to logb(en+1)¡A logb(en)= logb
�
en+1

en
A

�
=¡B.

This in turn is equivalent to en+1

en
A = b¡B.

This motivates the following definition.

Definition 64. Suppose that xn converges to x�. Let en= jxn¡x�j. We say that xn converges
to x of order q and rate r if

lim
n!1

en+1
en
q = r:

Order 1. Convergence of order 1 is called linear convergence. As in the previous example, the rate r provides
information on the number of additional correct digits per term.
Order 2. Convergence of order 2 is also called quadratic convergence. As we saw above, it means that number
of correct binary digits dn roughly doubles from one term to the next. More precisely, dn+1� 2dn+B where
the rate r=2¡B tells us that B=¡log2(r). [Note that r has the advantage of being independent of the base
in which we measure the number of correct digits.]

Order of convergence of fixed-point iteration

Theorem 65. Suppose that x� is a fixed point of a sufficiently differentiable function f . Suppose
that jf 0(x�)j< 1 so that, by Theorem 57, fixed-point iteration of f(x) converges to x� locally.

Then the convergence is of orderM with rate 1

M !
jf (M)(x�)j whereM >1 is the smallest integer

so that f (M)(x�)=/ 0.
In particular.

� If f 0(x�)=/ 0, then the convergence is linear with rate jf 0(x�)j.

� If f 0(x�)= 0 and f 00(x�)=/ 0, then the convergence is quadratic with rate 1

2
jf 00(x�)j.
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Comment. Here, sufficiently differentiable means that f needs to beM times continuously differentiable so that
we can apply Taylor's theorem.

Proof. By Taylor's theorem (Theorem 52), if f 0(x�)= f 00(x�)= ���= f (M¡1)(x�)= 0 for some M >1, then

f(x)= f(x�)+
1
M !

f (M)(�)(x¡ x�)M

for some � between x and x�. We use this with x replaced by xn to conclude that

xn+1¡ x�= f(xn)¡ f(x�)=
1
M !

f (M)(�n)(xn¡ x�)M

for some �n between xn and x�.
Thus

xn+1¡x�
(xn¡ x�)M

=
1
M !

f (M)(�n) ¡!
n!1

1
M !

f (M)(x�);

where the limit follows from the continuity of f (M)(x) (and convergence of xn!x�). �

Example 66. (cont'd) From a plot of cos(x), we can see that it has a unique fixed point in the
interval [0;1]. Does fixed-point iteration converge locally? If so, determine the order and the rate.

This is a continuation of Example 58.

Solution. If f(x) = cos(x), then f 0(x) = ¡sin(x). Since jsin(x)j < 1 for all x 2 [0; 1], we conclude that
jf 0(x�)j< 1. By Theorem 57, fixed-point iteration will therefore converge to x� locally.
Since x�� 0.7391, we have jf 0(x�)j � jsin(0.7391)j � 0.6736.
Because f 0(x�)=/ 0, we conclude that the order of convergence is 1 and the rate is 0.6736.
Comment. A rate of 0.5 would mean that the number of correct digits increases by 1 for each iteration (and
this is what the bisection method provides). Here, convergence is slightly slower.

Example 67. (cont'd)

(a) Newton's method applied to finding a root of f(x) = x3¡ 2 is equivalent to fixed-point
iteration of which function g(x)?

(b) Does Newton's method converge locally to 23
p

? If so, determine the order and the rate.

This is a continuation of Example 60.

Solution.

(a) Newton's method applied to f(x) is equivalent to fixed-point iteration of

g(x)= x¡ f(x)
f 0(x)

= x¡ x3¡ 2
3x2

=
2
3

�
x+

1

x2

�
:

(b) By Theorem 57, Newton's method converges locally to x�= 23p if jg 0(x�)j< 1.

We compute that g 0(x)= 2

3
¡ 4

3x3
so that g0(x�)= 2

3
¡ 4

3 � 2 =0.

At this point, we know that Newton's method converges locally to 23p .

Moreover, g 00(x)= 4

x4
so that g00(x�)= 4

24/3
=22/3� 1.5874.

Hence, the order of convergence is 2 and the rate is 1
2
jg00(x�)j � 0.7937.

Comment. Since the rate is less than 1, the convergence is actually slightly better than a doubling of
correct digits for each iteration.
Important. We will see shortly that it is typical for Newton's method to have convergence of order 2.
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