
Notes for Lecture 7 Mon, 9/18/2023

Example 40. In Example 38, which we continued in the previous example, only the left point
ever got updated. Will that always be the case? Explain!
Solution. For f(x)=x3¡ 2, we have f 0(x)= 3x2 and f 00(x)= 6x.
Therefore we have f 0(x)> 0 as well as f 00(x)> 0 for all x2 [1; 2]. This means that our function is increasing
as well as concave up (on the interval [1; 2]).
Because it is concave up, its graph will always lie below the secant lines we construct (see below).
Combined with the function being increasing, the regula falsi points (roots of the secant lines) will always be to
the left of the true root (here 23p ).
Accordingly, the right endpoint will never get updated.
Review of concavity. Recall that a function f(x) is concave up (like any part of a parabola opening upward)
at x= c if f 00(c)> 0. At such a point, the graph of the function lies above the tangent line (at least locally).
Make a sketch! On the other hand, this means that for sufficiently small intervals [a; b] around c, the graph will
lie below the secant line through (a; f(a)) and (b; f(b)).

Let us note the following differences between bisection and regula falsi:

� The intervals produced by bisection shrink by a factor of 1/2 per iteration. On the other
hand, the intervals produced by regula falsi usually don't drop below a certain length.
For instance. This is illustrated by Example 38. In that case, the generated intervals are all of the form
[a; 2] where the left side a approaches 23p from below. In particular, these intervals will always have
length larger than 2¡ 23p � 0.74.

� Despite this, the sequence cn of �new� interval endpoints produced by regula falsi can be
shown to always converge to a root. Often the approximations cn converge faster than the
approximations obtained through bisection, but it can also be the other way around.

Comment. There are, however, variations of regula falsi that are more reliably faster than bisection.

� Bisection is guaranteed to converge to a root at a certain rate (namely, one bit per
iteration). Regula falsi frequently but not always converges faster, but we cannot guarantee
a certain rate (this depends on the involved function f(x)).

Example 41. Suppose we use bisection or regula falsi to compute a root of some function. Several
iterations result in the intervals [a1; b1]; [a2; b2]; :::; [an; bn]. Based on these intervals, what is our
approximation of the root?

(a) In the case of bisection.

(b) In the case of regula falsi.

Solution.

(a) In the case of bisection, the generically best choice for our approximation is the midpoint of the final
interval (an+ bn)/2.

(b) In the case of regula falsi, our approximation is the �new� endpoint of the final interval. More precisely,
the approximation is an if bn= bn¡1 and it is bn if an= an¡1.
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Secant method

The secant method for computing a root of a function f(x) is a modification of regula falsi
where we do not try to bracket the root (in other words, we do not produce intervals that are
guaranteed to contain the root).

Instead, starting with two initial approximations x0 and x1, we construct x2; x3; ::: by the rule

xn+1=
xn¡1f(xn)¡xnf(xn¡1)

f(xn)¡ f(xn¡1)
:

Comment. In other words, if a = xn¡1 and b = xn are the two most recent approximations, then the next
approximation is

xn+1= c=
af(b)¡ bf(a)
f(b)¡ f(a) ;

and, as in regula falsi, this is the root of the secant line through (a; f(a)) and (b; f(b)). While regula falsi next
determines whether to continue with the interval [a; c] or with [c; b], the secant method always continues with
b and c as the next pair of approximations (in particular, the root does not need to lie between b and c).
Advanced comment. The formula for xn+1 is somewhat problematic because it is prone to round-off errors.
Namely, if xn converges to a root of f(x), then in both the numerator and denominator of that formula we are
subtracting numbers of almost equal value. This can result in damaging loss of precision.
Why is this not an issue for regula falsi? (Hint: What do we know about the signs of f(a) and f(b)?)

Example 42. Determine an approximation for 23
p

by applying the secant method to the function
f(x)=x3¡ 2 with initial approximations x0=1 and x1=2. Perform 3 steps.

Solution.

� x2=
x0f(x1)¡ x1f(x0)
f(x1)¡ f(x0)

=
8

7
� 1.1429

� x3=
x1f(x2)¡ x2f(x1)
f(x2)¡ f(x1)

=
75
62
� 1.2097

� x4=
x2f(x3)¡ x3f(x2)
f(x3)¡ f(x2)

=
989,312
782,041

� 1.2650

After 3 steps of the secant method, our approximation for 23p is 989,312
782,041

� 1.2650.
Comment. For comparison, 23p � 1.2599.
Comment. Note that the interval [x2; x3] does not contain the root 23p .

Compare Example 42 to Example 38 where we used regula falsi instead (note how the first two
iterations resulted in the same approximations). In operational terms, the secant method is a
simpler version of regula falsi since we are not trying to determine an interval that is guaranteed
to contain a root.

It may therefore come as a surprise that the secant method typically converges considerably faster
than regula falsi. However, we no longer have a guarantee of convergence (and the situation in
general depends on the initial approximations as well as the function f(x)).
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Example 43. Python The following is code for performing a fixed number of iterations of the
secant method. Note that the code is a simplified version of our code in Example 39 for the regula
falsi method.
>>> def secant_method(f, a, b, nr_steps):

for i in range(nr_steps):
c = (a*f(b) - b*f(a)) / (f(b) - f(a))
a = b
b = c

return b

Comment. This time, we return only a single value which is an approximation to the desired root. (Recall that
the secant method does not provide intervals containing the true root.)

As before, let us use this code to automatically perform the computations from Example 42.

>>> def my_f(x):
return x**3 - 2

>>> from fractions import Fraction

>>> [secant_method(my_f, Fraction(1), Fraction(2), n) for n in range(1,4)]

[Fraction(8, 7), Fraction(75, 62), Fraction(989312, 782041)]

Newton's method

The Newton method proceeds as the secant method, except that it uses tangents instead of
secants. In particular, instead of two previous points xn¡1; xn (so that we construct a secant line)
we only require a single point xn to compute the next point.

Example 44. Derive a formula for the root of the tangent line through (a; f(a)).
Solution. The line has slope m= f 0(a). (We could also pick the other point.)
Since it passes through (a; f(a)), the line has the equation y¡ f(a)=m(x¡ a).
To find its root (or x-intercept), we set y=0 and solve for x.

We find that the root is x= a¡ f(a)

m
= a¡ f(a)

f 0(a)
.

Comment. Compare the above derivation with what we did for the regula falsi method.

Thus, given an initial approximation x0, the Newton method constructs x1; x2; ::: by the rule

xn+1=xn¡
f(xn)
f 0(xn)

:

Comment. In contrast to the secant method, the Newton method requires us to be able to compute f 0(x).
Also, per iteration we need two function evaluations (one for f and one for f 0) whereas the secant method only
requires a single function evaluation.

Comment. If we use the approximation f 0(xn)� f(xn)¡ f(xn¡1)

xn¡xn¡1
(which is a good approximation if xn¡1 and

xn are sufficiently close) in the Newton method, then we actually obtain the secant method.
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Example 45. Determine an approximation for 23
p

by applying Newton's method to the function
f(x)=x3¡ 2 with initial approximation x0=1. Perform 3 steps.
Solution. We compute that f 0(x)= 3x2.

� x1=x0¡
f(x0)
f 0(x0)

=
4
3
� 1.3333

� x2=x1¡
f(x1)
f 0(x1)

=
91
72
� 1.2639

� x3=x2¡
f(x2)
f 0(x2)

=
1,126,819
894,348

� 1.2599

After 3 steps of Newton's method, our approximation for 23p is 1,126,819
894,348

� 1.259933.

Comment. For comparison, 23p � 1.259921. The error is only 0.000012!
After one more iteration, the error drops to an astonishing 1.2 � 10¡10.
After one more iteration, the error drops to an astonishing 1.2 � 10¡20.
It looks like the number of correct digits is doubling at each step!!
We will soon prove that this is indeed the case.

Example 46. Python The following code implements the Newton method. Note that we need
as input both a function f and its derivative fd:
>>> def newton_method(f, fd, x0, nr_steps):

for i in range(nr_steps):
x0 = x0 - f(x0)/fd(x0)

return x0

Let us use this code to automatically perform the computations from Example 45.
>>> def f(x):

return x**3 - 2

>>> def fd(x):
return 3*x**2

>>> [newton_method(f, fd, 1, n) for n in range(1,5)]

[1.3333333333333333, 1.2638888888888888, 1.259933493449977, 1.2599210500177698]

Next, let us compare these values to 23
p

, the actual root of f(x).
>>> [newton_method(f, fd, 1, n) - 2**(1/3) for n in range(1,6)]

[0.07341228343846007, 0.003967838994015649, 1.24435551038804e-05,
1.2289658180009155e-10, 0.0]

It really looks like the number of correct digits is doubling at each step! Can you explain what
happened for the last output for which we got 0.0?
Well, we expect about 20 correct decimal digits (translating to about 20 � log210� 66.4 binary digits). That is
more than the number of significant digits that can be stored in a double-precision float. Accordingly, the error
is going to be rounded down to 0.

Finally, for comparison with Example 45, here are the first few exact values:
>>> from fractions import Fraction

>>> [newton_method(f, fd, Fraction(1), n) for n in range(1,4)]

[Fraction(4, 3), Fraction(91, 72), Fraction(1126819, 894348)]

Armin Straub
straub@southalabama.edu

26


