
Notes for Lecture 5 Mon, 9/11/2023

Example 27. Python As our next upgrade, let us collect the digits in a list instead of printing
them to the screen. Here is how we can create a list in Python and add an element to it:
>>> L = [1, 2, 3]

>>> L.append(4)

>>> print(L)

[1, 2, 3, 4]

Here is our code adjusted for using a list (and now it is more pleasant to ask for more digits):

>>> x = 0.1 # or any value < 1
nr_digits = 10 # we want this many digits of x
digits = [] # this list will store the digits of x
from math import trunc
for i in range(nr_digits):

x = 2*x
digit = trunc(x)
digits.append(digit)
x = x-digit

print(digits)

[0, 0, 0, 1, 1, 0, 0, 1, 1, 0]

Example 28. Python For our final upgrade, we collect the code into a function that we call
fracpart_digits. This is crucial for making it possible to use the code on different numbers.
>>> def fracpart_digits(x, nr_digits):

digits = []
from math import trunc
for i in range(nr_digits):

x = 2*x
digit = trunc(x)
digits.append(digit)
x = x-digit

return digits

We are now able to compute the digits of numbers by simply calling our function:
>>> fracpart_digits(0.1, 10)

[0, 0, 0, 1, 1, 0, 0, 1, 1, 0]

>>> fracpart_digits(0.2, 10)

[0, 0, 1, 1, 0, 0, 1, 1, 0, 0]

>>> from math import pi

>>> fracpart_digits(pi/4, 10)

[1, 1, 0, 0, 1, 0, 0, 1, 0, 0]

Comment. Recall that, if you are not in a Python console, you need to add print(..) to see any output.

As an advanced use of lists, here is how we could compute 5 digits of 1/n for n2f2; 3; 4; 5g:
>>> [fracpart_digits(1./n, 5) for n in range(2,6)]

[[1, 0, 0, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0]]

Comment. Note how the digits of 1/2= (0.1)2 and 1/4= (0.01)2 are particularly easy to verify.

Armin Straub
straub@southalabama.edu

14



Example 29. One of the most famous/notorious mathematical results is Fermat's last theorem.
It states that, for n> 2, the equation xn+ yn= zn has no positive integer solutions!

Pierre de Fermat (1637) claimed in a margin of Diophantus' book Arithmetica that he had a proof
(�I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.�).

It was finally proved by Andrew Wiles in 1995 (using a connection to modular forms and elliptic curves).
This problem is often reported as the one with the largest number of unsuccessful proofs.

On the other hand, in a Simpson's episode, Homer discovered that

178212+ 184112 �=� 192212:

If you check this on an old calculator it might confirm the equation. However, the equation is not correct, though
it is �nearly�: 178212+ 184112¡ 192212�¡7.002 �1029.
Why would that count as �nearly�? Well, the smallest of the three numbers, 178212� 1.025 � 1039, is bigger
by a factor of more than 109. So the difference is extremely small in comparison.
More precisely, if 178212+ 184112 is the true value, then approximating it with 192212 produces

� an absolute error of j178212+ 184112¡ 192212j � 7.00 �1029 (rather large), and

� a relative error of
������178212+ 184112¡ 192212

178212+ 184112

������� 2.76 � 10¡10 (very small).

Comment. We can immediately see that Homer is not quite correct by looking at whether each term is even or
odd. Do you see it?
http://www.bbc.com/news/magazine-24724635

Example 30. Strangely, e�¡�=19.999099979:::. Determine both the absolute and the relative
error when approximating this number by 20.
https://xkcd.com/217/

Solution. The absolute error is j20¡ (e�¡ �)j � 9.0 � 10¡4.

The relative error is
������20¡ (e�¡ �)

e�¡ �

������� 4.5 � 10¡5.

Solving equations

Now that we have discussed how computers deal with numbers, it is natural to think about how
to compute numbers of interest. Often, these arise as solutions of equations.

For instance. As simple but instructive instances, how do we compute numbers like 2
p

, log(3) or �?

Note that any equation can be put into the form f(x)=0 where f(x) is some function. Solving
that equation is equivalent to finding roots of that function.

There are many approaches to root finding see, for instance:
https://en.wikipedia.org/wiki/Root-finding_algorithms

Comment. The solve routines implemented in professional libraries often use hybrid versions of the methods we
discuss below (as well as others). For instance, Brent's method (used, for instance, in MATLAB, PARI/GP, R
or SciPy) is a hybrid of three: the bisection and secant methods as well as inverse quadratic interpolation.
Comment. It depends very much on f(x) which approach to root finding is best. For instance, is f(x) a nice
(i.e. differentiable) function? Is it costly to evaluate f(x)? This is the reason for why there are many different
approaches to finding roots and why it is important to understand their strenghts and weaknesses.

Armin Straub
straub@southalabama.edu

15

http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
http://www.bbc.com/news/magazine-24724635
https://xkcd.com/217/
https://xkcd.com/217/
https://xkcd.com/217/
https://xkcd.com/217/
https://xkcd.com/217/
https://xkcd.com/217/
https://xkcd.com/217/
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms


The bisection method

Suppose that we wish to find a root of the continuous function f(x) in the interval [a; b].
If f(a)< 0 and f(b)> 0, then the intermediate value theorem tells us that there must be an
r2 [a; b] such that f(r)= 0. (Likewise if f(a)> 0 and f(b)< 0.)
Comment. Recall that the intermediate value theorem requires f(x) to be continuous so that there are no jumps
or singularities.

The bisection method now cuts the interval [a; b] into two halves by computing the midpoint
c= a+ b

2
. Depending on whether f(c)6 0 or f(c)> 0, we conclude that there must be a root in

[a; c] or in [c; a]. In either case, we have cut the length of the interval of uncertainty in half.

This process is then repeated until we have a sufficiently small interval that is guaranteed to
contain a root of f(x).

Example 31. Determine an approximation for 23
p

by applying the bisection method to the
function f(x)=x3¡ 2 on the interval [1; 2]. Perform 4 steps of the bisection method.

Comment. Note that it is obvious that 1< 23p < 2 so that the interval [1; 2] is a natural choice.

Solution. Note that f(1)=¡1<0 while f(2)=6>0. Hence, f(x)must indeed have a root in the interval [1;2].

� [a; b] = [1; 2] contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=
1+ 2

2
=
3

2
. We compute f(c)= c3¡ 2= 27

8
¡ 2= 11

8
> 0.

Hence, [a; c] =
h
1;
3

2

i
must contain a root of f(x).

� [a; b] =
h
1;
3

2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=
1+ 3/2

2
=
5

4
. We compute f(c)=¡ 3

64 < 0.

Hence, [c; b] =
h
5

4
;
3

2

i
must contain a root of f(x).

� [a; b] =
h
5

4
;
3

2

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=

11
8
. We compute f(c)= 307

512 > 0.

Hence, [a; c] =
h
5

4
;
11
8

i
must contain a root of f(x).

� [a; b] =
h
5

4
;
11
8

i
contains a root of f(x) (since f(a)< 0 and f(b)> 0).

The midpoint is c= a+ b

2
=

21
16 . We compute f(c)= 1069

4096 > 0.

Hence, [a; c] =
h
5

4
;
21
16

i
must contain a root of f(x).

After 4 steps of the bisection method, we know that 23p must lie in the interval
h
5

4
;
21
16

i
= [1.25; 1.3125].

Comment. For comparison, 23p � 1.2599. Note that our approximations are a bit more impressive if we think
in terms of binary digits. Then each step provides one additional digit of accuracy (because the length of the
interval of uncertainty is cut by half).
Comment. The above steps are on purpose written in a repetitive manner (reusing the same variable names a;
b; c with new values) to make it easier to translate the process into Python code.

Armin Straub
straub@southalabama.edu

16



Example 32. (continued) We wish to determine an approximation for 23
p

by applying the
bisection method to the function f(x)=x3¡ 2 on the interval [1; 2].

(a) After how many iterations of bisection will the final interval have size less than 10¡6?

(b) If we approximate 23
p

using the midpoint of the final interval, how many iterations of
bisection do we need to guarantee that the (absolute) error is less than 10¡6?

Solution.

(a) At each iteration, the width of the interval is divided by 2. Hence, the width of the interval after n steps
will be exactly 2¡ 1

2n
=

1

2n
. Solving 1

2n
< 10¡6 for n, we find n > ¡log2(10¡6) = 6 log2(10) � 19.93.

Hence, we need 20 iterations.

(b) Again, the width of the interval after n steps will be exactly ` = 2¡ 1
2n

=
1

2n
. Since 23p is contained in

this interval, the absolute error of approximating it with the midpoint is at most `/2 = 1

2n+1
. Solving

1

2n+1
<10¡6 for n, we find n>¡log2(10¡6)¡1=6 log2(10)¡1�18.93. Hence, we need 19 iterations.

Comment. We didn't refer to the first part on purpose. Given the answer 20 from the first part, can you
see that the answer must be 20¡ 1= 19?

If we use bisection to compute a root of a (continuous) function f(x) on [a; b], then:

� After n iterations, the (absolute) error is less than b¡ a
2n+1

.

This assumes that we approximate the root using the midpoint of the final interval.
Important comment. This error bound is independent of f(x).

� Each additional iteration requires 1 function evaluation.

Armin Straub
straub@southalabama.edu

17


