
Notes for Lecture 3 Wed, 8/30/2023

Review. Possibilities for binary representations of real numbers:

� fixed-point number: �x:y with x and y of a certain number of bits

� floating-point number: �1:x � 2y with x and y of a certain number of bits
IEEE 754, single precision: 32 bit (1 bit for sign, 23 bit for significand x, 8 bit for exponent y)
IEEE 754, double precision: 64 bit (1 bit for sign, 52 bit for significand x, 11 bit for exponent y)

Example 12. Represent¡0.375 as a single precision floating-point number according to IEEE 754.
Solution. ¡0.375=¡3

8
=¡3 � 2¡3= ¡ 1: 1

binary

� 2¡2

The exponent ¡2 gets stored as ¡2+ 127= 0111,1101 . (Recall that the bias 27¡ 1= 127 is being added to
the exponents. Also, it helps to keep in mind that 127=(0111; 1111)2.)

Overall, ¡0.375 is stored as 1 0111,1101 1000,0000,::: .

Example 13. What is the largest single precision floating-point number according to IEEE 754?
Technical detail. The exponent (1111;1111)2=28¡ 1=255 is reserved for special numbers (such as infinities
or �NaN�). Hence, the largest exponent corresponds to (1111; 1110)2= 254.

Solution. The largest single precision floating-point number is

1 1111,1110 1111,1111,::: =+1.111::: � 2127� 2128=22
7� 3.4 � 1038:

Here, we used that (1111; 1110)2=28¡ 2= 254 so that the actual exponent is 254¡ 127= 127.
For comparison. The largest 32 bit (signed) integer is 231¡1�2.1 �109 (the exponent is 31=32¡1 to account
for using 1 bit to store the sign). You might find this surprisingly small. And, indeed, 32 bit is not enough to
address all memory locations in modern systems which is why the step to 64 bit was necessary.
Double precision. Likewise, the largest double precision floating-point number is

1 111; 1111,1110 1111,1111,::: =+1.111::: � 21023� 21024=22
10� 1.8 � 10308:

On the other hand, the largest 64 bit (signed) integer is 263¡ 1� 9.2 � 1018.

Example 14. (reasons for floats) Almost universally, major programming languages use floating-
point numbers for representing real numbers. Why not fixed-point numbers?
Solution. Fixed-point numbers have some serious issues for scientific computation. Most notably:

� Scaling a number typically results in a loss of precision.
For instance, dividing a number by 2r and then multiplying it with 2r loses r digits of precision (in
particular, this means that it is computationally dangerous to change units). Make sure that you see that
this does not happen for floating-point numbers.

� The range of numbers is limited.
For instance, the largest number is on the order of 2N where N is the number of bits used for the integer
part. On the other hand, a floating-point number can be of the order of 22

M¡1
where M is the number

of bits used for the exponent. (Make sure you see how enormous of a difference this is! See the previous
example for the case of double precision.)

Moreover, as noted in the box below, fixed-point numbers do not really offer anything that isn't already provided
by integers. This is the reason why most programming languages don't even offer built-in fixed-point numbers.

Fixed-point numbers are essentially like integers.

For instance, instead of 21.013 (say, seconds) we just work with 21013 (which now is in milliseconds).
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Example 15. Give an example where one should not use floats.
Solution. Most notably, one should not use floats when dealing with money. That is because, as we saw earlier,
an amount such as 0.10 dollars cannot be represented exactly using a float (when using base 2, as is the default in
most programming languages such as Python) and thus will get rounded. This is very problematic when working
with money.

Comment. For most purposes, the easiest way to avoid these issues is to store dollar amounts as cents. For the
latter we can then simply use integers and work with exact numbers (no rounding).

Example 16. Python Python automatically uses (double precision) floats when we enter num-
bers with a decimal point or as the result of divisions.

>>> 1.1

1.1

>>> 1/3

0.3333333333333333

Comment. Note how we can see (roughly) the 52 bit precision of the double precision floats (there are 16 decimal
digits after the decimal point, which translates to about 16 � log210� 53.15 binary digits; this corresponds to
about 52 bit after the first implicit 1).
IMPORTANT. As noted earlier, the commands here are entered into an interactive Python interpreter (this is
indicated by the >>>). When running a Python script, we need to use print(1.1) or print(1/3) to receive
the above outputs.

For very large (or very small) numbers, scientific notation is often used:

>>> 2.0 * 10**80

2e+80

>>> (1/2)**100

7.888609052210118e-31

The following are two things that are (somewhat) special to Python and are often handled differ-
ently in other programming languages. First, integers are not limited in size (often, integers are
limited to 64 bits, which can cause issues like overflow when one exceeds the 264 possibilities).
This is illustrated by the following (this explains why we wrote 2.0 above):

>>> 2 * 10**80

200000000000000000000000000000000000000000000000000000000000000000000000000000000

Second, Python likes to throw errors when a computation runs into an issue (there are nice ways
to �catch� these errors in a program and to react accordingly, but that is probably beyond what
we will use Python for).

>>> 1 / 0

ZeroDivisionError: division by zero

Some other programming languages would instead (silently, without error messages) return special
floats representing +1, ¡1 or NaN (not-a-number).

Example 17. To store 13 decimal digits, how many bits are needed?
Solution. There are 1013 many possibilities with 13 decimal digits. Since log2(1013)= 13log2(10)�43.19, we
need 44 bits.
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Example 18. Python Let us perform the previous calculation of 13log2(10) using Python. First
of all, we need to get access to the log function because it is not available by default. Instead it
resides in a module called math:
>>> from math import log

>>> 13*log(10, 2)

43.18506523353572

It might be unexpected that the 2 is the second argument of log. If you want to learn more about
how to use a function, you can enter the function name followed by a question mark:

>>> log?

Example 19. Python Explain the following floating-point rounding issue:

>>> 0.1 + 0.1 + 0.1 == 0.3

False

>>> 0.1 + 0.1 + 0.1

0.30000000000000004

Solution. As we saw in Example 6, 0.1 cannot be stored exactly as a floating-point number (when using base
2). Instead, it gets rounded up slightly. After adding three copies of this number, the error has increased to the
point that it becomes visible as in the above output.
IMPORTANT. In the Python code above, we used the operator == (two equal signs) to compare two quantities.
Note that we cannot use = (single equal sign) because that operator is used for assignment (x = y assigns the
value of y to x, whereas x == y checks whether x and y are equal).
Comment. As the above issue shows, we should never test two floats x and y for equality. Instead, one typically
tests whether the difference jx¡ y j is less than a certain appropriate threshold. An alternative practical way is
to round the floats before comparison (below, we round to 8 decimal digits):

>>> round(0.1 + 0.1 + 0.1, 8) == round(0.3, 8)

True
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