
Notes for Lecture 2 Mon, 8/28/2023

Example 6. (review) Express 0.1 in base 2.
Solution.

� 2 � 0 :1= 0 :2

� 2 � 0.2= 0 :4

� 2 � 0.4= 0 :8

� 2 � 0.8= 1 :6

� 2 � 0.6= 1 :2 and now things repeat. . .

Hence, 0.1=(0.00011���)2 and the final digits 0011 repeat: 0.1=(0.0001100110011���)2

Example 7. Express 35/6 in base 2.
Solution. Note that 35/6=5+5/6 so that 35/6= (101:���)2 with 5/6 to be accounted for.

� 2 � 5/6= 1 +4/6

� 2 � 4/6= 1 +2/6

� 2 � 2/6= 0 +4/6 and now things repeat. . .

Hence, 35/6= (101.110���)2 and the final two digits 10 repeat: 35/6= (101.110101010���)2

Floating-point numbers (and IEEE 754)

Possibilities for binary representations of real numbers:

� fixed-point number: �x:y with x and y of a certain number of bits

�x is called the integer part, and y the fractional part.

� floating-point number: �1:x � 2y with x and y of a certain number of bits
�1:x is called the significand (or mantissa), and y the exponent.
In other words, the floating-point representation is �scientific notation in base 2�.
Important comment. In order to represent as many numbers as possible using a fixed number of bits, it is
crucial that we avoid unnecessarily having different representations for the same number. That is why the
exponent y above is chosen so that the significand starts with 1 followed by the �decimal� point. This has the
added benefit of not needing to actually store that 1 (rather it is �implied� or �hidden�).

IEEE 754 is the most widely used standard for floating-point arithmetic and specifies, most impor-
tantly, how many bits to use for significand and exponent.
1985: first version of the standard
IEEE: Institute of Electrical and Electronics Engineers
Used by many hardware FPUs (floating point units) which are part of modern CPUs.
For more details: https://en.wikipedia.org/wiki/IEEE_754

Example 8. 4.5=(100.1)2=(1.001)2 � 22 = + 1.001
binary

� 22

Next, we will see exactly how IEEE 754 would store this as bits (32 bits in the case of �single precision�).

Armin Straub
straub@southalabama.edu

4

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

IEEE 754 offers several choices but the two most common are:

� single precision: 32 bit (1 bit for sign, 23 bit for significand, 8 bit for exponent)

� double precision: 64 bit (1 bit for sign, 52 bit for significand, 11 bit for exponent)

In each case, 1 bit is used for the sign. Also, recall that the significand is preceded by an implied bit equal to 1.

Comment. IEEE 754 also offers half precision as well as higher precisions but single and double are the most
commonly used because this is what older and current CPUs use. Moreover, the base (also called radix) can also
be 10 instead of 2.

In IEEE 754, a constant, called a bias, is added to the exponent so that all exponents are
positive (this avoids using a sign bit for the exponent). Namely, one stores x + bias where
bias=27¡ 1= 127 for single precision (bias=210¡ 1 for double precision).

Example 9. Represent 4.5 as a single precision floating-point number according to IEEE 754.
Solution. 4.5=(100.1)2=(1.001)2 � 22= + 1: 001

binary

� 22

The exponent 2 gets stored as 2+ 127= 1000,0001 .

Overall, 4.5 is stored as 0 1000,0001 0010,0000,0000,0000,0000,000 .

Example 10. Represent ¡0.1 as a single precision floating-point number according to IEEE 754.
Solution. In Example 6, we computed that 0.1=(0.0001100110011���)2.
Hence: ¡0.1= ¡ 1: 1001,1001:::

binary

� 2¡4

The exponent ¡4 gets stored as ¡4+ 127= 0111,1011 .

Overall, ¡0.1 is stored as 1 0111,1011 1001,1001,1001,::: .
Caution. Note that we are not able to store ¡0.1 exactly. Therefore we need to be careful about how to choose
the final bit to best approximate ¡0.1. According to IEEE 754, the final bit should be 1 (rather than 0 which we
would get if we simply truncated) so that ¡0.1 gets stored as 1 0111,1011 1001,1001,1001,1001,1001,101 .

Note that it certainly makes sense to round up the final 0 to 1 because it is followed by 1::: (this is similar to
us rounding up a final 0 in decimal to 1 if it is followed by 5:::).

Armin Straub
straub@southalabama.edu

5

Using Python as a basic calculator

Example 11. Python We can use Python as a basic calculator. Addition, subtraction, multi-
plication and division work as we would probably expect:

>>> 16*3+1

49

>>> 3/2

1.5

To compute powers like 264, we need to use ** (two asterisks).

>>> 2**64

18446744073709551616

Division with remainder of, say, 49 by 3 results in 49 = 16 � 3 + 1. In Python, we can use the
operators // and % to compute the result of the division as well as the remainder:

>>> 49 // 3

16

>>> 49 % 3

1

% is called the modulo operator. For instance, we say that 49 modulo 3 equals 1 (and this is often
written as 49� 1 (mod 3)).

IMPORTANT. The commands here are entered into an interactive Python interpreter (this
is indicated by the >>>). When running a Python script, we need to use print(16*3+1) or
print(3/2) to receive the first two outputs above.

Armin Straub
straub@southalabama.edu

6

