How computers represent numbers

Digital computers deal with all data in the form of plenty of **bits**. Each bit is either a 0 or a 1.

Comment. Quantum computers instead work with **qubits** (short for quantum bit), each of which is a linear combination $\alpha \boxed{0} + \beta \boxed{1}$ of basic bits $\boxed{0}$ and $\boxed{1}$, where α and β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$. As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit is the special case where α and β are both 0 or 1.

For efficiency, the **CPU** (central processing unit) of a computer deals with several bits at once. Current CPUs typically work with 64 bits at a time.

About 20 years ago, CPUs were typically working with 32 bits at a time instead.

Note that 64 bits can store $2^{64} = 18446744073709551616$ many different values. That is a large number but may be limited for certain applications.

For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the **decimal system** to express numbers. For instance:

$$1234 = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0.$$

10 is called the base, and 1, 2, 3, 4 are the digits in base 10. To emphasize that we are using base 10, we will write $1234 = (1234)_{10}$. Likewise, we write

$$(1234)_b = 1 \cdot b^3 + 2 \cdot b^2 + 3 \cdot b^1 + 4 \cdot b^0.$$

In this example, b > 4, because, if b is the base, then the digits have to be in $\{0, 1, ..., b - 1\}$. **Comment.** In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To avoid confusion, one refers to 4 as the **least significant digit** and 1 as the **most significant digit**.

Example 1. $25 = 16 + 8 + 1 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$. Accordingly, $25 = (11001)_2$.

While the approach of the previous example works well for small examples when working by hand (if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.

Solution.

- $49 = 24 \cdot 2 + 1$. Hence, $49 = (\dots 1)_2$ where \dots are the digits for 24.
- $24 = 12 \cdot 2 + 0$. Hence, $49 = (...01)_2$ where ... are the digits for 12.
- $12 = 6 \cdot 2 + 0$. Hence, $49 = (...001)_2$ where ... are the digits for 6.
- $6 = 3 \cdot 2 + 0$. Hence, $49 = (...0001)_2$ where ... are the digits for 3.
- $3 = 1 \cdot 2 + 1$. Hence, $49 = (...10001)_2$ where ... are the digits for 1.
- $1 = 0 \cdot 2 + 1$. Hence, $49 = (110001)_2$.

Example 3. Express 49 in base 3.

Solution.

- $49 = 16 \cdot 3 + 1$
- $16 = 5 \cdot 3 + 1$
- $5 = 1 \cdot 3 + 2$
- $1 = 0 \cdot 3 + 1$

Hence, $49 = (1211)_3$.

Other bases.

What is 49 in base 5? $49 = (144)_5$. What is 49 in base 7? $49 = (100)_7$.

Fixed-point numbers

Example 4. (warmup)

- (a) Which number is represented by $(11001)_2$?
- (b) Which number is represented by $(11.001)_2$?
- (c) Express 5.25 in base 2.
- (d) Express 2.625 in base 2. [Note that 2.625 = 5.25/2.]

Solution.

- (a) $(11001)_2 = 1 + 8 + 16 = 25$
- (b) (11.001)₂ = 2¹ + 2⁰ + 2⁻³ = 3.125 Alternatively, (11.001)₂ should be (11001)₂ = 25 divided by 2³ (because we move the "decimal" point by three places). Indeed, (11.001)₂ = 25/2³ = 3.125.
 Comment. The professional term for "decimal" point would be radix point or, in base 2, binary point (but I have heard neither of these used much in my personal experience).
- (c) Note that $5.25 = 2^2 + 2^0 + 2^{-2}$. Hence $5.25 = (101.01)_2$.
- (d) Since multiplication (respectively, division) by 2 shifts the digits to the left (respectively, right), we deduce from $5.25 = (101.01)_2$ that $2.625 = (10.101)_2$

Example 5. Express 1.3 in base 2.

Solution. Suppose we want to determine 6 binary digits after the "decimal" point. Note that multiplication by $2^6 = 64$ moves these 6 digits before the "decimal" point.

 $2^6 \cdot 1.3 = 83.2$ and $83.2 = (1010011...)_2$ (fill in the details!).

Hence, shifting the "decimal" point, we find $1.3\,{=}\,(1.010011{\cdots})_2.$

Solution. Alternatively, we can compute one digit at a time by multiplying with 2 each time:

• 1.3	[Hence, the most significant digit is $\boxed{1}$ with 0.3 still to be accounted for.]
• $2 \cdot 0.3 = 0.6$	[Hence, the next digit is 0 with 0.6 still to be accounted for.]
• $2 \cdot 0.6 = 1.2$	[Hence, the next digit is 1 with 0.2 still to be accounted for.]
• $2 \cdot 0.2 = 0.4$	[Hence, the next digit is 0 with 0.4 still to be accounted for.]
• $2 \cdot 0.4 = 0.8$	[Hence, the next digit is 0 with 0.8 still to be accounted for.]
• $2 \cdot 0.8 = 1.6$	[Hence, the next digit is 1 with 0.6 still to be accounted for.]

• And now things repeat because we started with 0.6 before...

Hence, $1.3 = (1.01001\cdots)_2$ and the final digits 1001 will be repeated forever: $1.3 = (1.0100110011001\cdots)_2$

Comment. As we saw here, fractions with a finite decimal expansion (like 13/10 = 1.3) do not need to have a finite binary expansion (and typically don't).