How computers represent numbers

Digital computers deal with all data in the form of plenty of bits. Each bit is either a 0 or a 1 .
Comment. Quantum computers instead work with qubits (short for quantum bit), each of which is a linear combination $\alpha \boxed{0}+\beta, 1$ of basic bits 0 and 1 , where α and β are complex numbers with $|\alpha|^{2}+|\beta|^{2}=1$. As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit is the special case where α and β are both 0 or 1 .
For efficiency, the CPU (central processing unit) of a computer deals with several bits at once. Current CPUs typically work with 64 bits at a time.
About 20 years ago, CPUs were typically working with 32 bits at a time instead.
Note that 64 bits can store $2^{64}=18446744073709551616$ many different values. That is a large number but may be limited for certain applications.
For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the decimal system to express numbers. For instance:

$$
1234=1 \cdot 10^{3}+2 \cdot 10^{2}+3 \cdot 10^{1}+4 \cdot 10^{0}
$$

10 is called the base, and $1,2,3,4$ are the digits in base 10 . To emphasize that we are using base 10 , we will write $1234=(1234)_{10}$. Likewise, we write

$$
(1234)_{b}=1 \cdot b^{3}+2 \cdot b^{2}+3 \cdot b^{1}+4 \cdot b^{0}
$$

In this example, $b>4$, because, if b is the base, then the digits have to be in $\{0,1, \ldots, b-1\}$.
Comment. In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To avoid confusion, one refers to 4 as the least significant digit and 1 as the most significant digit.

Example 1. $25=16+8+1=\boxed{1} \cdot 2^{4}+\boxed{1} \cdot 2^{3}+\boxed{0} \cdot 2^{2}+\boxed{0} \cdot 2^{1}+\boxed{1} \cdot 2^{0}$.
Accordingly, $25=(11001)_{2}$.
While the approach of the previous example works well for small examples when working by hand (if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.

Solution.

- $49=24 \cdot 2+1$. Hence, $49=(\ldots 1)_{2}$ where \ldots are the digits for 24 .
- $24=12 \cdot 2+0$. Hence, $49=(\ldots 01)_{2}$ where \ldots are the digits for 12 .
- $12=6 \cdot 2+0$. Hence, $49=(\ldots 001)_{2}$ where \ldots are the digits for 6 .
- $6=3 \cdot 2+0$. Hence, $49=(\ldots 0001)_{2}$ where \ldots are the digits for 3 .
- $3=1 \cdot 2+1$. Hence, $49=(\ldots 10001)_{2}$ where \ldots are the digits for 1 .
- $1=0 \cdot 2+1$. Hence, $49=(110001)_{2}$.

Example 3. Express 49 in base 3 .

Solution.

- $49=16 \cdot 3+1$
- $16=5 \cdot 3+1$
- $5=1 \cdot 3+2$
- $1=0 \cdot 3+1$

Hence, $49=(1211)_{3}$.
Other bases.
What is 49 in base $5 ? 49=(144)_{5}$.
What is 49 in base $7 ? 49=(100)_{7}$.

Fixed-point numbers

Example 4. (warmup)

(a) Which number is represented by $(11001)_{2}$?
(b) Which number is represented by $(11.001)_{2}$?
(c) Express 5.25 in base 2 .
(d) Express 2.625 in base 2. [Note that $2.625=5.25 / 2$.]

Solution.

(a) $(11001)_{2}=1+8+16=25$
(b) $(11.001)_{2}=2^{1}+2^{0}+2^{-3}=3.125$

Alternatively, $(11.001)_{2}$ should be $(11001)_{2}=25$ divided by 2^{3} (because we move the "decimal" point by three places). Indeed, $(11.001)_{2}=25 / 2^{3}=3.125$.
Comment. The professional term for "decimal" point would be radix point or, in base 2, binary point (but I have heard neither of these used much in my personal experience).
(c) Note that $5 \cdot 25=2^{2}+2^{0}+2^{-2}$. Hence $5 \cdot 25=(101.01)_{2}$.
(d) Since multiplication (respectively, division) by 2 shifts the digits to the left (respectively, right), we deduce from $5.25=(101.01)_{2}$ that $2.625=(10.101)_{2}$

Example 5. Express 1.3 in base 2.
Solution. Suppose we want to determine 6 binary digits after the "decimal" point. Note that multiplication by $2^{6}=64$ moves these 6 digits before the "decimal" point.
$2^{6} \cdot 1.3=83.2$ and $83.2=(1010011 \cdots)_{2}$ (fill in the details!).
Hence, shifting the "decimal" point, we find $1.3=(1.010011 \cdots)_{2}$.

Solution. Alternatively, we can compute one digit at a time by multiplying with 2 each time:

- 1.3
- $2 \cdot 0.3=0.6$
- $2 \cdot 0.6=1.2$
- $2 \cdot 0.2=0.4$
- $2 \cdot 0.4=0.8$
- $2 \cdot 0.8=1$. 6
[Hence, the most significant digit is 1 with 0.3 still to be accounted for.]
[Hence, the next digit is 0 with 0.6 still to be accounted for.]
[Hence, the next digit is 1 with 0.2 still to be accounted for.]
[Hence, the next digit is 0 with 0.4 still to be accounted for.]
[Hence, the next digit is 0 with 0.8 still to be accounted for.]
[Hence, the next digit is 1 with 0.6 still to be accounted for.]
- And now things repeat because we started with 0.6 before...

Hence, $1.3=(1.01001 \cdots)_{2}$ and the final digits 1001 will be repeated forever: $1.3=(1.0100110011001 \cdots)_{2}$
Comment. As we saw here, fractions with a finite decimal expansion (like $13 / 10=1.3$) do not need to have a finite binary expansion (and typically don't).

