
Notes for Lecture 1 Wed, 8/23/2023

How computers represent numbers

Digital computers deal with all data in the form of plenty of bits. Each bit is either a 0 or a 1.
Comment. Quantum computers instead work with qubits (short for quantum bit), each of which is a linear
combination � 0 + � 1 of basic bits 0 and 1 , where � and � are complex numbers with j�j2+ j� j2=1.
As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit
is the special case where � and � are both 0 or 1.

For efficiency, the CPU (central processing unit) of a computer deals with several bits at once.
Current CPUs typically work with 64 bits at a time.
About 20 years ago, CPUs were typically working with 32 bits at a time instead.

Note that 64 bits can store 264= 18446744073709551616 many different values. That is a large
number but may be limited for certain applications.
For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer
cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the decimal system to express numbers. For instance:
1234=1 �103+2 � 102+3 �101+4 � 100:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=1 � b3+2 � b2+3 � b1+4 � b0:

In this example, b > 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.
Comment. In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To
avoid confusion, one refers to 4 as the least significant digit and 1 as the most significant digit.

Example 1. 25= 16+8+1= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20.
Accordingly, 25=(11001)2.

While the approach of the previous example works well for small examples when working by hand
(if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49= (:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 . Hence, 49=(:::10001)2 where ::: are the digits for 1.

� 1=0 � 2+ 1 . Hence, 49=(110001)2.

Armin Straub
straub@southalabama.edu

1



Example 3. Express 49 in base 3.
Solution.

� 49= 16 � 3+ 1

� 16=5 � 3+ 1

� 5=1 � 3+ 2

� 1=0 � 3+ 1

Hence, 49=(1211)3.

Other bases.
What is 49 in base 5? 49= (144)5.
What is 49 in base 7? 49= (100)7.

Fixed-point numbers

Example 4. (warmup)

(a) Which number is represented by (11001)2?

(b) Which number is represented by (11.001)2?

(c) Express 5.25 in base 2.

(d) Express 2.625 in base 2. [Note that 2.625= 5.25/2.]

Solution.

(a) (11001)2=1+8+ 16= 25

(b) (11.001)2=21+20+2¡3= 3.125
Alternatively, (11.001)2 should be (11001)2=25 divided by 23 (because we move the �decimal� point by
three places). Indeed, (11.001)2= 25/23= 3.125.
Comment. The professional term for �decimal� point would be radix point or, in base 2, binary point (but
I have heard neither of these used much in my personal experience).

(c) Note that 5.25=22+20+2¡2. Hence 5.25=(101.01)2.

(d) Since multiplication (respectively, division) by 2 shifts the digits to the left (respectively, right), we deduce
from 5.25=(101.01)2 that 2.625=(10.101)2

Armin Straub
straub@southalabama.edu

2



Example 5. Express 1.3 in base 2.
Solution. Suppose we want to determine 6 binary digits after the �decimal� point. Note that multiplication by
26= 64 moves these 6 digits before the �decimal� point.
26 � 1.3= 83.2 and 83.2=(1010011:���)2 (fill in the details!).
Hence, shifting the �decimal� point, we find 1.3=(1.010011���)2.

Solution. Alternatively, we can compute one digit at a time by multiplying with 2 each time:

� 1 :3 [Hence, the most significant digit is 1 with 0.3 still to be accounted for.]

� 2 � 0.3= 0 :6 [Hence, the next digit is 0 with 0.6 still to be accounted for.]

� 2 � 0.6= 1 :2 [Hence, the next digit is 1 with 0.2 still to be accounted for.]

� 2 � 0.2= 0 :4 [Hence, the next digit is 0 with 0.4 still to be accounted for.]

� 2 � 0.4= 0 :8 [Hence, the next digit is 0 with 0.8 still to be accounted for.]

� 2 � 0.8= 1 :6 [Hence, the next digit is 1 with 0.6 still to be accounted for.]

� And now things repeat because we started with 0.6 before. . .

Hence, 1.3=(1.01001���)2 and the final digits 1001 will be repeated forever: 1.3= (1.0100110011001���)2

Comment. As we saw here, fractions with a finite decimal expansion (like 13/10= 1.3) do not need to have a
finite binary expansion (and typically don't).

Armin Straub
straub@southalabama.edu

3


