
Notes for Lecture 23 Thu, 11/17/2022

Numerical methods for solving differential equations

The general form of a first-order differential equation (DE) is y 0= f(x; y),
Comment. Recall that higher-order differential equations can be written as systems of first-order differential
equations: y 0= f(x; y) in terms of y=(y1; y2; y3; :::) where we set y1= y, y2= y 0, y3= y 00,
It therefore is no loss of generality to develop methods for first-order differential equation. While we will focus
on the case of a single function y(x), the methods we discuss extend naturally to the case of several functions
y(x)= (y1(x); y2(x); :::).

In order to have a unique solution y(x) that we can numerically approximate, we will add an initial
condition. As such, we discuss methods for solving first-order initial value problems (IVPs)

y 0= f(x; y); y(x0)= y0:

Comment. Recall from Differential Equations class that such an IVP is guaranteed to have a unique solution
under mild assumptions on f(x; y) (for instance, that f(x; y) is smooth around (x0; y0)).
Comment. There would be no loss of generality in only considering only initial conditions of the form y(0)= y0.
Indeed, suppose the initial condition is y(x0)= y0. Then, by replacing x by x+x0 in the DE and rewriting the
DE in terms of y~(x)= y(x+ x0), we obtain an IVP with initial condition y~(0)= y0.

Review of the simplest differential equations

Let's start with one of the simplest (and most fundamental) differential equation (DE). It is first-
order (only a first derivative) and linear (with constant coefficients).

Example 130. Solve y 0=3y.
Solution. y(x)=Ce3x

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with certain techniques for solving) you can use computer algebra systems to
solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 131. Solve the initial value problem (IVP) y 0=3y, y(0)=5.
Solution. This has the unique solution y(x)= 5e3x.

The following is a non-linear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 132. Solve y 0= xy2.

Solution. This DE is separable: 1

y2
dy=xdx. Integrating, we find ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1
2
x2+C

=
2

D¡x2 . [Here, D=¡2C but that relationship doesn't matter.]

Comment. Note that we did not find the singular solution y=0 (lost when dividing by y2). We can obtain it
from the general solution by letting D!1.

Armin Straub
straub@southalabama.edu

85

Euler's method

Euler's method is a numerical way of approximating the (unique) solution y(x) to the IVP

y 0= f(x; y); y(x0)= y0:

It follows from Taylor's theorem (Theorem 48) that

y(x+h)= y(x)+ y 0(x)h+ 1
2
y 00(�)h2:

Choose a step size h>0. Write xn=x0+nh. Our goal is to provide approximations yn of y(xn)
for n=1; 2; :::.
Since we know y(x0)= y0, we approximate

y(x0+h) � y(x0)+ y 0(x0)h =
DE

y(x0)+ f(x0; y(x0))h

y(x0+2h) � y(x0+h)+ y 0(x0+h)h =
DE

y(x0+h)+ f(x0+h; y(x0+h))h

y(x0+3h) � y(x0+2h)+ y 0(x0+2h)h =
DE

y(x0+2h)+ f(x0+2h; y(x0+2h))h
���

Comments.

� Here we use y(x+h)� y(x)+ y 0(x)h first with x=x0, then with x=x0+h and so on.

� Note how, when approximating y(x0+mh), we use the previous approximation y(x0+ (m¡ 1)h). All
other quantities on the right-hand side are known to us.

� Clearly, the error in these approximations will accumulate and the approximations are likely worse as we
continue (in other words, our approximations of y(x) will be worse as x gets further away from x0).

Write xn=x0+nh. Our goal is to provide approximations yn of y(xn) for n=1; 2; :::.
Note that we start with x0 and y0 from the initial condition.

In terms of xn and yn our above approximations become:

y(xn+h) � y(xn)+ y 0(xn)
f(xn;y(xn))

h � yn+ f(xn; yn)h := yn

Two kinds of errors. There are two different errors involved here: in the first approximation, the error is from
truncating the Taylor expansion and we know that this local truncation error is O(h2). On the other hand, in
the second approximation, we introduce an error because we use the previous approximation yn instead of y(xn).
Suppose that we approximate y(x) on some interval [x0; xmax] using n steps (so that xn= xmax).

Then the step size is h= xmax¡x0
n

. We therefore have n= xmax¡x0
h

many local truncation errors of size O(h2).

It is therefore natural to expect that the global error is O(nh2)=O(h).

(Euler's method) The following is an order 1 method for solving IVPs:

yn+1 = yn+ f(xn; yn)h

Comment. As explained above, being an order 1 method means that Euler's method has a global error that is
O(h) (while the local truncation error is O(h2)).
Comment. While Euler's method is rarely used in practice, it serves as the foundation for more powerful
extensions such as the Runge�Kutta methods.

Armin Straub
straub@southalabama.edu

86

Example 133. Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for x2 [0; 1]
using Euler's method with 4 steps. In particular, what is the approximation for y(1)?
Comment. Of course, the real solution is y(x)= ex. In particular, y(1)= e� 2.71828.

Solution. The step size is h= 1¡ 0

4
=
1

4
. We apply Euler's method with f(x; y)= y:

x0=0 y0=1

x1=
1
4

y1= y0+ f(x0; y0)h=1+
1
4
=
5
4
= 1.25

x2=
1
2

y2= y1+ f(x1; y1)h=
5
4
+
5
4
� 1
4
=
52

42
= 1.5625

x3=
3
4

y3= y2+ f(x2; y2)h=
52

42
+
52

42
� 1
4
=
53

43
� 1.9531

x4=1 y4= y3+ f(x3; y3)h=
53

43
+
53

43
� 1
4
=
54

44
� 2.4414

In particular, the approximation for y(1) is y4� 2.4414.

Comment. Can you see that, if instead we start with h= 1

n
, then we similarly get xi=

(n+1)i

ni
for i=0;1; :::; n.

In particular, y(1)� yn=
(n+1)n

nn
=
�
1+

1

n

�n
! e as n!1. Do you recall how to derive this final limit?

Example 134. Python Let us implement Euler's method to redo and extend Example 133.

>>> def euler(f, x0, y0, xmax, n):
h = (xmax - x0) / n
ypoints = [y0]
for i in range(n):

y0 = y0 + f(x0,y0)*h
x0 = x0 + h
ypoints.append(y0)

return ypoints

>>> def f_y(x, y):
return y

If we choose the number of steps n to be 4 and xmax to be 1 (because we want xn = 1), then
the following matches exactly our computation in Example 133:

>>> euler(f_y, 0, 1, 1, 4)

[1, 1.25, 1.5625, 1.953125, 2.44140625]

As expected, increasing the number of steps provides better approximations to the exact solution
y(x)= ex with y(1)= e� 2.718.

>>> euler(f_y, 0, 1, 1, 10)

[1, 1.1, 1.2100000000000002, 1.3310000000000002, 1.4641000000000002, 1.61051,
1.7715610000000002, 1.9487171, 2.1435888100000002, 2.357947691, 2.5937424601]

>>> euler(f_y, 0, 1, 1, 100)[-1]

2.704813829421526

If ypoints is a list, then its elements can be accessed as ypoints[0], ypoints[1], ::: Moreover, we can access
the last element as ypoints[-1]. For instance, above, we used euler_e(f, 0, 1, 1, 100)[-1] to get the
last element of the 101 approximations y0; y1; :::; y100. That last element is the approximation of y(1)= e.

Armin Straub
straub@southalabama.edu

87

The following convincingly illustrates that the error in Euler's method is O(h).
>>> from math import e

>>> [euler(f_y, 0, 1, 1, 10**n)[-1] - e for n in range(6)]

[-0.7182818284590451, -0.124539368359045, -0.013467999037519274, -
0.0013578962231490799, -0.00013590163381849152, -1.3591284549807625e-05]

However, note that our computer had to work pretty hard to get the final approximation, because that entailed
computing 105 values. We clearly need a higher order method in order to compute to higher accuracy.

Taylor methods

(Taylor method of order k) The following is an order k method for solving IVPs:

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h2+ ���+ 1

k!
f (k¡1)(xn; yn)hk

where f (n)(x; y) is short for dn

dxn
f(x; y(x)) (expressed in terms of f and its partial derivatives).

For instance. f 0(x; y) = d

dx
f(x; y(x))= fx(x; y) + fy(x; y)y

0(x)= fx(x; y)+ fy(x; y)f(x; y)

Especially for higher derivatives, it is easier to compute these for specific f . See next example.
Comment. As for Euler's method, being an order k method means that the method has a global error that is
O(hk) (while the local truncation error is O(hk+1); note that we can see this because we truncate the Taylor
expansion of y(x) after hk so that the next term is O(hk+1)).

Example 135. Spell out the Taylor method of order 2 for numerically solving the IVP

y 0= cos(x)y; y(0)=1:

Solution. The Taylor method of order 2 is based on the Taylor expansion

y(x+h)= y(x)+ y 0(x)h+
1

2
y 00(x)h2+O(h3);

where we have a local truncation error of O(h3) so that the global error will be O(h2).
From the DE we know that y 0(x)= cos(x)y, which is f(x; y). We differentiate this to obtain

y 00(x) =
d
dx

cos(x)y=¡sin(x)y+ cos(x)y 0=¡sin(x)y+ cos2(x) y

= (¡sin(x)+ cos2(x))y;

which is f 0(x; y). Hence, the Taylor method of order 2 takes the form:

yn+1 = yn+ f(xn; yn)h+
1

2
f 0(xn; yn)h

2

= yn+ cos(xn)ynh+
1

2
((¡sin(xn)+ cos2(xn))yn)h2

For any choice of h, we can therefore compute (x1; y1); (x2; y2); ::: starting with (x0; y0) by the above recursive
formula combined with xn+1=xn+h.

Armin Straub
straub@southalabama.edu

88

