
Notes for Lecture 19 Thu, 10/27/2022

Example 100. Under which conditions is

S(x)=

�
S1(x); if x2 [0; a];
S2(x); if x2 [a; b];

is a cubic spline? A natural cubic spline?
Solution. S(x) is a cubic spline if S1(x) and S2(x) are cubic polynomials such that

S1(a)=S2(a); S1
0(a)=S2

0(a); S1
00(a)=S2

00(a):

S(x) is a natural cubic spline if, in addition, S1
00(0)=0 and S2

00(b) = 0.
Comment. Together with the three conditions coming from prescribing the values S(0), S(a) and S(b), these
are 8 conditions in order for S(x) to be a natural cubic spline. 8 equations are just the right number to uniquely
determine the underlying 2 � 4=8 unknowns.

Example 101. The following function S(x) is a cubic spline.

S(x)=¡1¡ 2
9
(a¡ 5)x¡ 1

3
(2a¡ 1)x2+ 1

36
x3

�
(¡10a¡ 13); if x2 [¡2; 0];
8(4a+7); if x2 [0; 1]:

(a) Spell out the conditions we need to check to see that this is a cubic spline.

(b) What are the underlying data points?

(c) Is there a choice of a such that S(x) is a natural cubic spline?

Solution.

(a) Write S1(x) for S(x) on [¡2; 0] and S2(x) for S(x) on [0; 1]. Then, as in the previous example, the
conditions for S(x) to be a cubic spline are

S1(0)=S2(0); S1
0(0)=S2

0(0); S1
00(0)=S2

00(0):

These conditions are visibly satisfied since the formulas for S1(x) and S2(x) agree up to a multiple of x3.

(b) The knots of the spline are ¡2; 0; 1. We compute S(¡2)=1, S(0)=¡1, S(1)=2.
Hence the data points are (¡2; 1), (0;¡1), (1; 2).

(c) In order for S(x) to be a natural spline, we need S 00(¡2)= 0 as well as S 00(1)= 0. Using

S 00(x)=¡2
3
(2a¡ 1)+ 1

6
x

�
(¡10a¡ 13); if x2 [¡2; 0];
8(4a+7); if x2 [0; 1];

we have S 00(¡2)=¡2

3
(2a¡1)¡ 1

3
(¡10a¡13)=2a+5 and S 00(1)=¡2

3
(2a¡1)+ 4

3
(4a+7)=4a+10.

Both of these are 0 if and only if a=¡5

2
. Therefore, S(x) is a natural cubic spline if a=¡5

2
.

Comment. Can you explain why do the two segments of the spline only differ in the cubic term?
[Hint: Note that 0 is a knot and look again at the first part.]

Armin Straub
straub@southalabama.edu

65

Example 102. Python Let us construct cubic splines using Python with scipy.

>>> from scipy import linspace, interpolate

Comment. Many basic functions like linspace are provided by both numpy and scipy.

We start by defining the data points that we wish to interpolate.

>>> xpoints = [1, 2, 4, 5, 7]

>>> ypoints = [2, 1, 4, 3, 2]

We can then construct the cubic spline with natural boundary conditions as follows.

>>> spline = interpolate.CubicSpline(xpoints, ypoints, bc_type='natural')

Comment. Other standard choices for the boundary conditions include 'not-a-knot' (the default) as well as
'clamped' and 'periodic' (this one requires the first and last point to have the same y-coordinates).
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

The resulting natural cubic spline is piecewise defined by a collection of cubic polynomials. We
can plot it as we did in Example 78 (this time we also include a legend).

>>> import matplotlib.pyplot as plt

>>> xplot = linspace(1, 7, 100)

>>> plt.plot(xplot, spline(xplot), '-', label='spline (natural)')

>>> plt.plot(xpoints, ypoints, 'o', label='knots')

>>> plt.legend()

>>> plt.show()

The resulting plot is a simpler version of the following one where we also included two other cubic
splines as well as the polynomial interpolant:

Homework. Can you reproduce this plot?

1 2 3 4 5 6 7

1.0

1.5

2.0

2.5

3.0

3.5

4.0 spline (natural)
spline (not-a-knot)
spline (periodic)
polynomial interpolant
knots

Can you identify (some of) the splines without the labels? Try other knots and plot the splines!

For instance. The periodic spline is easily identified here because of the matching derivatives at the endpoints.
The natural spline is the one that is most like a clothesline pinned to the knots.
The not-a-knot spline is closer to polynomial interpolation.

Armin Straub
straub@southalabama.edu

66

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

If desired, we can access the piecewise polynomials as follows:

>>> spline.c

[[6.37096774e-01 -6.49193548e-01 8.54838710e-01 -9.67741935e-02]
[2.22044605e-16 1.91129032e+00 -1.98387097e+00 5.80645161e-01]
[-1.63709677e+00 2.74193548e-01 1.29032258e-01 -1.27419355e+00]
[2.00000000e+00 1.00000000e+00 4.00000000e+00 3.00000000e+00]]

>>>

For instance, the first column refers to 2 ¡ 1.637(x ¡ 1) + 0.637(x ¡ 1)3 (the cubic used on
[1; 2], the first interval) while the fourth column encodes 3 ¡ 1.274(x ¡ 5) + 0.581(x ¡ 5)2 ¡
0.097(x¡ 5)3 (the cubic used on [5; 7], the last interval).

Comment. The exact cubics are 2¡ 203
124(x¡ 1)+

79
124 (x¡ 1)

3 and 3¡ 79
62 (x¡ 5)+

18
31 (x¡ 5)

2¡ 3

31 (x¡ 5)
3.

Note how, for the first one, S1(x), we can immediately see that S1
00(1)=0. Because we created a natural cubic

spline, we also have S4
00(7)=0. (Check it from the above exact formula!)

Example 103. In the case of four nodes/knots, how is the polynomial interpolant related to the
cubic splines?
Solution. Note that the polynomial interpolant for four nodes is a cubic polynomial.
On the other hand, each cubic spline consists of three cubic polynomials S1; S2; S3. In the case of the not-a-
knot cubic spline, we have S1=S2 as well as S3=S2, which implies that all three are equal so that the not-a-
knot cubic spline is a single cubic polynomial (interpolating the four given points).
Therefore, the polynomial interpolant must equal the not-a-knot cubic spline in this case.

Armin Straub
straub@southalabama.edu

67

Working with functions: differentiation + integration

Numerical differentiation

We know from Calculus that f 0(x)= lim
h!0

f(x+ h)¡ f(x)
h

.

To numerically approximate f 0(x) we could use f 0(x)� 1

h
[f(x+h)¡ f(x)] for small h.

In this section, we analyze this and other ways of numerically differentiating a function.
Application. These approximations are crucial for developing tools to numerically solve (partial) differential
equations by discretizing them.

Review. We can express Taylor's theorem (Theorem 48) in the following manner:

f(x+h)= f(x)+ f 0(x)h+
1

2
f 00(x)h2+ :::+

1

n!
f (n)(x)hn

Taylor polynomial

+
1

(n+1)!
f (n+1)(�)hn+1

error

This form is particularly convenient for the kind of error analysis that we are doing here.
Important notation. When the exact form of the error is not so important, we simply write O(hn+1).

Definition 104. We write e(h)=O(hn) if there is a constant C such that je(h)j6Chn for all
small enough h.
For our purposes, e(h) is usually an error term and this notation allows us to talk about that error without being
more precise than necessary.
If e(h) is the error, then we often say that an approximation is of order n if e(h) =O(hn).
Caution. This notion of order is different from the order of convergence that we discussed in the context of
fixed-point iteration and Newton's method.

Example 105. Determine the order of the approximation f 0(x)� 1

h
[f(x+h)¡ f(x)].

Comment. This approximation of the derivative is called a (first) forward difference for f 0(x).

Likewise, f 0(x)� 1

h
[f(x)¡ f(x¡h)] is a (first) backward difference for f 0(x).

Solution. By Taylor's theorem, f(x+ h)= f(x)+hf 0(x)+
h2

2
f 00(x)+

h3

6
f 000(x)+O(h4). It follows that

1
h
[f(x+h)¡ f(x)] = f 0(x)+ h

2
f 00(x) +O(h2) = f 0(x)+ O(h) :

The error is of order 1.

Comment. The presence of the term h

2
f 00(x) tells us that the order is exactly 1 unless f 00(x)= 0 (that is, the

order cannot generally be improved to � for some � < 1).

Armin Straub
straub@southalabama.edu

68

