Notes for Lecture 6 Thu, 9/1/2022

Example 28. (continued) We wish to determine an approximation for 3/2 by applying the
bisection method to the function f(x)=x—2 on the interval [1,2].

(a) After how many iterations of bisection will the final interval have size less than 10767

(b) If we approximate 3/2 using the midpoint of the final interval, how many iterations of
bisection do we need to guarantee that the (absolute) error is less than 1067

Solution.

(a) At each iteration, the width of the interval is divided by 2. Hence, the width of the interval after n steps

% = 21”. 21,” < 107 for n, we find n > —logo(107%) = 6 log2(10) ~ 19.93.

Hence, we need 20 iterations.

will be exactly Solving

Since 3/2 is contained in
1 .
W. SO|VIng

<1076 for n, we find n > —log2(107%) — 1 =61log2(10) — 1 ~ 18.93. Hence, we need 19 iterations.

(b) Again, the width of the interval after n steps will be exactly ¢ = % = 21,”.

this interval, the absolute error of approximating it with the midpoint is at most ¢ /2 =

1
Comment. We didn't refer to the first part on purpose. Given the answer 20 from the first part, can you
see that the answer must be 20 — 1 =197

If we use bisection to compute a root of a (continuous) function f(z) on [a, b], then:

: : . b—
e After n iterations, the (absolute) error is less than Z—Jj

This assumes that we approximate the root using the midpoint of the final interval.

Important comment. This error bound is independent of f(x).

e Each additional iteration requires 1 function evaluation.

Example 29. Recall that the bisection method cuts an interval [a, b] into two halves by computing

the midpoint c:aTH). It then chooses either [a, ¢| or [c, a] as the improved new interval.

Give a simple condition for when the interval [a, c| is chosen.

Solution. We choose [a, ¢] if f(a) and f(c) have opposite signs.
This is equivalent to f(a) f(c) <O0.

Comment. Here, and in the sequel, we will be very nonchalant about the possibility that f(c¢) =0. This would
mean that we have accidentally found the actual root. This is not something that we expect to happen in most
applications (though serious code would have to consider the case where f(c) is 0 to within the precision we
are working with). Note that if f(c¢) =0 then our above rule would always choose the right half of the interval
(and that would be fine).

Comment. In Python, we can therefore implement an iteration of bisection as follows:

>>> # starting with the interval [a, b]
if f(a)*f(c) <O
b = ¢ # pick [a, c] as the next interval
else
a = c # pick [c, b] as the next interval

Even if you have never used/seen such an if-then-else statement before, the above code can be read almost as
an English sentence. Note how we indent things after if and after else (the else part can be omitted if we
only want to do something if a condition is true) to group the code that we want to be executed in each case.

Armin Straub 15
straub@southalabama.edu

Comment. One potential issue with using the product f(a) f(c) rather than directly comparing the signs is that,
depending on our available precision, f(a) f(c) might run into an underflow (note that f(a) and f(c) are each
getting smaller by construction) and be treated as zero. Here is a simple artificial example illustrating the issue:

>>> def f(x)
return (x-1)**99

>>> £(0.99) < 0
True
>>> £(1.01) > 0
True
>>> £(0.99) * £(1.01) < O

False

With the representation of floats and their precision in mind, explain the above output!

When writing serious code, we therefore have to account for this and should instead compare the sign of f(a)
to the sign of f(b) (and not compute the product). We will ignore this issue in the sequel.

Example 30. Let us implement the bisection method in Python (using the observation
from the previous example). As input, we use a function f, the end points a and b of an interval
guaranteed to contain a root of f, and the number of iterations that we wish to perform. The
output is the final interval.

>>> def bisection(f, a, b, nr_steps)
for i in range(nr_steps)
c=(a+b) /2
if f(a)*f(c) < 0
b=c
else
a=c¢
return [a, b]

In order to use this function, we need to define a function f(x). For comparison with our com-

putation in Example 27, let us define f(z)= 2% — 2. We can call it anything.

>>> def my_f (x)
return x**x3 - 2

Let us verify (always check simple examples when writing code!) the definition of f(x) by com-
puting the values for x =1 and z =2.
>>> my_£(1)

-1
>>> my_f(2)
6
We are now ready to perform bisection with this function on the interval [a,b] with a=1 and b=2.
>>> bisection(my_f, 1, 2, 1)
[1, 1.5]
>>> bisection(my_f, 1, 2, 2)

[1.25, 1.5]
This matches our computation in Example 27.

Armin Straub 16
straub@southalabama.edu

Example 31. Our computation in the previous example automatically ended up using
floats (we started with integer values for a and b but we end up with floats after dividing by 2
for the midpoint). To work with fractions (no rounding!) in Python, we can use the fractions
module as follows.

>>> from fractions import Fraction
>>> Fraction(1, 2) + Fraction(1l, 3)
5/6
[You will probably see Fraction(5, 6) as the output rather than the above prettified version.]

Remarkably, our code can be used with fractions without changing it in any way:

>>> bisection(my_£f, Fraction(1), Fraction(2), 1)
[Fraction(1, 1), Fraction(3, 2)]
>>> bisection(my_£f, Fraction(1), Fraction(2), 2)

[Fraction(5, 4), Fraction(3, 2)]
Now, this perfectly matches our computation in Example 27.

Advanced comment. Unlike in some other programming languages, Python does not make us specify the type
of variables. For instance, we never had to tell Python whether the variables a and b should be an integer or a
float or something else. Instead, Python is flexible (and we just used that to our advantage). This is called duck
typing (true to the idiom that if it walks like a duck and it quacks like a duck, then it must be a duck). As such,
Python allows the variables a and b to be any type for which our code (for instance, (a + b) / 2) makes sense.

[As always, these features have advantages and disadvantages. For instance, disadvantages of duck typing are
speed and safety (as in making problematic kinds of bugs more likely).]

Finally, let us compute all 4 iterations of Example 27 at once:

>>> [bisection(my_f, Fraction(1l), Fraction(2), n) for n in range(1,5)]

[[Fraction(1, 1), Fraction(3, 2)], [Fraction(5, 4), Fraction(3, 2)], [Fraction(5, 4),
Fraction(11, 8)], [Fraction(5, 4), Fraction(21, 16)]1]

Example 32. Note that our bisection method code in Example 30 evaluates the function

f twice per iteration (because we compute f(a) and f(c)). Rewrite our code to only require one
evaluation of f per iteration.

Solution.

>>> def bisection(f, a, b, nr_steps)
fa = f(a)
for i in range(nr_steps)
c=(a+b) /2
fc = £(c)
if faxfc < O
b=c
else
a=c¢
fa = fc
return [a, b]

Try it! In terms of output, it should behave exactly as our previous code.

So why is this an improvement? (At first glance, it just looks more complicated...) Well, we need to keep in mind
that the function f could potentially be very costly to evaluate (f doesn't have to be a simple function as it was
in Example 27; instead, the definition of f might be a long computer program in itself and might require things
like querying databases in a complicated way). In such a case, this small detail might make a huge difference.

Armin Straub 17
straub@southalabama.edu

The regula falsi method

As before, we wish to find a root of the continuous function f(z) in the interval [a,b].

The regula falsi method proceeds like the bisection method.

However, as an attempt to improve our approximations, instead of using the midpoint aTer of the
interval [a, b], it uses the root of the secant line of f(x) through (a, f(a)) and (b, f(b)).

Comment. Note that the root of the secant line will be a good approximation of the root of f(x) if f(x) is
nearly linear on the interval.

Example 33. Derive a formula for the root of the line through (a, f(a)) and (b, f(b)).
f(b) = f(a)
b

Solution. The line has slope m = —

. (We could also pick the other point.)

Since it passes through (a, f(a)), the line has the equation y — f(a) =m(z — a).

To find its root (or x-intercept), we set y =0 and solve for x.

fla) _,_—a)f(a) _a(f(b)=f(a)) (b—a)f(a) __ af(b)—bf(a)
m f(b) = f(a) () = f(a) f(®) = f(a) fo) = fla) -
af(b) —bf(a)
() = f(a)

Historical comment. Regula falsi (also called false position method) derives its somewhat strange name from

its long history where the above formula (in a time where formulas in the modern sense were not yet a thing)

was used to solve linear equations f(x) = Az + B =0 by choosing two convenient values £ =a and x =b (these

would be the false positions since they are not the root itself).

We find that the root is x = a —

Comment. Note that the final formula for the root is symmetric in a and b. (As it must bel)

https://en.wikipedia.org/wiki/Regula_falsi

To cut each interval [a, b] into the two parts |a, | and [c, b]:

. . b
e Bisection uses the midpoint c:%.

af(b) —bf(a)
f() = f(a) ~

e Regula falsi uses c =

Example 34. Determine an approximation for 3/2 by applying the regula falsi method to the
function f(x)=x>—2 on the interval [1,2]. Perform 3 steps.

Solution. Note that f(1)=—1 <0 while f(2) =6>0. Hence, f(z) must indeed have a root in the interval [1,2].

e [a,b]=[1,2] contains a root of f(x) (since f(a) <0 and f(b)>0).

. ... af(®b)—bf(a) _8 174
The regula falsi point is ¢ =) —F@ — 7 We compute f(c)= —33 <0.
Hence, [c, b] = [;, 2] must contain a root of f(x).
e J[a,b]= [;, 2] contains a root of f(z) (since f(a) <0 and f(b) > 0).
. .. af(b)—>bf(a) 75 . 54781
The regula falsi point is ¢ = N OES (OREGE We compute f(c) = —338.338 < 0.

Hence, [c, b] = [2—2,2} must contain a root of f(x).

e J[a,b]= [g—g, 2} contains a root of f(xz) (since f(a) <0 and f(b) >0).
af(b) —bf(a) _ 37,538

The regula falsi point is ¢ = 0 Fla) = 30.30T" We compute f(c) <0.
Hence, [c, b] = [%, 2] must contain a root of f(z).

37,538

After 3 steps of the regula falsi method, we know that 3/2 must lie in [W’

2} ~[1.2388,2).
Comment. For comparison, 3/2 ~ 1.2599.

Armin Straub 18
straub@southalabama.edu

https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi
https://en.wikipedia.org/wiki/Regula_falsi

