
Notes for Lecture 1 Tue, 8/16/2022

How computers represent numbers

Digital computers deal with all data in the form of plenty of bits. Each bit is either a 0 or a 1.
Comment. Quantum computers instead work with qubits (short for quantum bit), each of which is a linear
combination � 0 + � 1 of basic bits 0 and 1 , where � and � are complex numbers with j�j2+ j� j2=1.
As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit
is the special case where � and � are both 0 or 1.

For efficiency, the CPU (central processing unit) of a computer deals with several bits at once.
Current CPUs typically work with 64 bits at a time.
About 20 years ago, CPUs were typically working with 32 bits at a time instead.

Note that 64 bits can store 264= 18446744073709551616 many different values. That is a large
number but may be limited for certain applications.
For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer
cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the decimal system to express numbers. For instance:
1234=4 �100+3 � 101+2 �102+1 � 103:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=4 � b0+3 � b1+2 � b2+1 � b3:

In this example, b > 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.
Comment. In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To
avoid confusion, one refers to 4 as the least significant digit and 1 as the most significant digit.

Example 1. 25= 16+8+1= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20.
Accordingly, 25=(11001)2.

While the approach of the previous example works well for small examples when working by hand
(if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49= (:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 . Hence, 49=(:::10001)2 where ::: are the digits for 1.

� 1=0 � 2+ 1 . Hence, 49=(110001)2.

Armin Straub
straub@southalabama.edu

1

Example 3. Express 49 in base 3.
Solution.

� 49= 16 � 3+ 1

� 16=5 � 3+ 1

� 5=1 � 3+ 2

� 1=0 � 3+ 1

Hence, 49=(1211)3.

Other bases.
What is 49 in base 5? 49= (144)5.
What is 49 in base 7? 49= (100)7.

Example 4. Python We can use Python as a basic calculator. Addition, subtraction, multipli-
cation and division work as we would probably expect:

>>> 16*3+1

49

>>> 3/2

1.5

To compute powers like 264, we need to use ** (two asterisks).

>>> 2**64

18446744073709551616

Division with remainder of, say, 49 by 3 results in 49 = 16 � 3 + 1. In Python, we can use the
operators // and % to compute the result of the division as well as the remainder:

>>> 49 // 3

16

>>> 49 % 3

1

% is called the modulo operator. For instance, we say that 49 modulo 3 equals 1 (and this is often
written as 49� 1 (mod 3)).

Armin Straub
straub@southalabama.edu

2

