How computers represent numbers

Digital computers deal with all data in the form of plenty of **bits**. Each bit is either a 0 or a 1.

Comment. Quantum computers instead work with **qubits** (short for quantum bit), each of which is a linear combination $\alpha \boxed{0} + \beta \boxed{1}$ of basic bits $\boxed{0}$ and $\boxed{1}$, where α and β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$. As such a single qubit theoretically contains an infinite amount of classical information. Note that a classical bit is the special case where α and β are both 0 or 1.

For efficiency, the **CPU** (central processing unit) of a computer deals with several bits at once. Current CPUs typically work with 64 bits at a time.

About 20 years ago, CPUs were typically working with 32 bits at a time instead.

Note that 64 bits can store $2^{64} = 18446744073709551616$ many different values. That is a large number but may be limited for certain applications.

For instance, modern cryptography often works with integers that are 2048 bits large. Clearly, such an integer cannot be stored in a single fundamental 64 bit block.

Representations of integers in different bases

In everyday life, we typically use the **decimal system** to express numbers. For instance:

$$1234 = 4 \cdot 10^0 + 3 \cdot 10^1 + 2 \cdot 10^2 + 1 \cdot 10^3.$$

10 is called the base, and 1, 2, 3, 4 are the digits in base 10. To emphasize that we are using base 10, we will write $1234 = (1234)_{10}$. Likewise, we write

$$(1234)_b = 4 \cdot b^0 + 3 \cdot b^1 + 2 \cdot b^2 + 1 \cdot b^3.$$

In this example, b > 4, because, if b is the base, then the digits have to be in $\{0, 1, ..., b - 1\}$. **Comment.** In the above examples, it is somewhat ambiguous to say whether 1 or 4 is the first or last digit. To avoid confusion, one refers to 4 as the **least significant digit** and 1 as the **most significant digit**.

Example 1. $25 = 16 + 8 + 1 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$. Accordingly, $25 = (11001)_2$.

While the approach of the previous example works well for small examples when working by hand (if we are comfortable with powers of 2), the next example illustrates a more algorithmic approach.

Example 2. Express 49 in base 2.

Solution.

- $49 = 24 \cdot 2 + 1$. Hence, $49 = (\dots 1)_2$ where \dots are the digits for 24.
- $24 = 12 \cdot 2 + 0$. Hence, $49 = (...01)_2$ where ... are the digits for 12.
- $12 = 6 \cdot 2 + 0$. Hence, $49 = (...001)_2$ where ... are the digits for 6.
- $6 = 3 \cdot 2 + 0$. Hence, $49 = (...0001)_2$ where ... are the digits for 3.
- $3 = 1 \cdot 2 + 1$. Hence, $49 = (...10001)_2$ where ... are the digits for 1.
- $1 = 0 \cdot 2 + 1$. Hence, $49 = (110001)_2$.

Example 3. Express 49 in base 3.

Solution.

- $49 = 16 \cdot 3 + 1$
- $16 = 5 \cdot 3 + 1$
- $5 = 1 \cdot 3 + 2$
- $1 = 0 \cdot 3 + 1$

```
Hence, 49 = (1211)_3.
```

```
Other bases.
What is 49 in base 5? 49 = (144)_5.
What is 49 in base 7? 49 = (100)_7.
```

Example 4. Python We can use Python as a basic calculator. Addition, subtraction, multiplication and division work as we would probably expect:

```
>>> 16*3+1
49
>>> 3/2
1.5
```

To compute powers like 2^{64} , we need to use ****** (two asterisks).

>>> 2**64

18446744073709551616

Division with remainder of, say, 49 by 3 results in $49 = 16 \cdot 3 + 1$. In Python, we can use the operators // and % to compute the result of the division as well as the remainder:

```
>>> 49 // 3
16
>>> 49 % 3
1
```

% is called the **modulo** operator. For instance, we say that 49 modulo 3 equals 1 (and this is often written as $49 \equiv 1 \pmod{3}$).