
Midterm #3: practice MATH 311 � Intro to Number Theory
midterm: Thursday, Nov 17

Please print your name:

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Problem 1. For unknown reasons, the high priest of number theory has banned usage of the Euclidean algorithm.
With the help of the Chinese remainder theorem, determine the modular inverse of 149 modulo 666.

Solution. Note that 666=2 �9 �37. We �rst compute 149¡1 modulo each of 2; 9; 37. That's super easy: 149¡1�1¡1�
1 (mod 2), 149¡1� 5¡1� 2 (mod 9) and 149¡1� 1¡1� 1 (mod37).

By the Chinese remainder theorem,

149¡1�1 �9 �37 � [(9 � 37)mod 2
¡1 ]

1

+2 �2 �37 � [(2 � 37)mod 9
¡1 ]

5

+1 �2 �9 � [(2 � 9)mod 37
¡1 ]

¡2

�333+740¡36�1037�371 (mod666): �

Problem 2. Compute 7111 (mod90) in the following three di�erent ways:

(a) Directly, using binary exponentiation.

(b) With the help of Euler's theorem.

(c) With the help of the Chinese remainder theorem (as well as Euler's theorem).

Solution.

(a) Modulo 90, we have 72= 49, 74= 492� 61, 78� 612� 31, 716� 312� 61, 732� 31, 764� 61.

Therefore, 7111=764 � 732 � 78 � 74 � 72 � 7� 61 � 31 � 31 � 61 � 49 � 7� 73 (mod90).

(b) Since 90 = 2 � 32 � 5, we �nd �(90) = 90
¡
1 ¡ 1

2

�¡
1 ¡ 1

3

�¡
1 ¡ 1

5

�
= 24 so that Euler's theorem tells us that

724� 1 (mod90). Since 111� 15 (mod24), we have 7111� 715=78 � 74 � 72 � 7� 31 � 61 � 49 � 7� 73 (mod90).
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(c) Notice that 90=2 � 32 � 5, where 2; 9; 5 are pairwise coprime.

Computing 7111 modulo each of 2; 9; 5 is much easier (note that �(9)=9
¡
1¡ 1

3

�
=6 so that, by Euler's theorem

76� 1 (mod 9); on the other hand, 74� 1 (mod 5)):

7111� 1111� 1 (mod 2); 7111� 73� (¡2)3� 1 (mod 9); 7111� 73� 23� 3 (mod 5):

By the Chinese remainder theorem,

7111� 1 � 9 � 5 � [(9 � 5)mod 2
¡1 ]

1

+1 � 2 � 5 � [(2 � 5)mod 9
¡1 ]

1

+3 � 2 � 9 � [(2 � 9)mod 5
¡1 ]

2

� 45+ 10+ 108� 73 (mod90):

Comment. While this might seem like the most involved approach (it certainly requires the most expertise),
observe that the actual computations are much simpler than in the other cases (because we are operating
modulo very small numbers). �

Problem 3. Note that 323= 17 � 19.

(a) Modulo 323, what do we learn from Euler's theorem?

(b) Using the Chinese remainder theorem, show that x144� 1 (mod323) for all x coprime to 323.

(c) Compare the two results!

Bonus: Can you come up with a strengthening of Euler's theorem?

Solution.

(a) Since �(323) = 323
¡
1¡ 1

17

�¡
1¡ 1

19

�
= 288, we learn that x288� 1 (mod323) for all x that are coprime to 323.

(b) By the Chinese remainder theorem, the congruence x144 � 1 (mod 323) is true for all x coprime to 323 (or,
equivalently, all x coprime to both 17 and 19) if and only if the two congruences x144 � 1 (mod 17) and
x144� 1 (mod19) are true for all such x.

By Fermat's little theorem, we have x16 � 1 (mod 17) and hence x144 � (x16)9 � 1 (mod 17). Likewise,
x18� 1 (mod19) implies that x144� (x18)8� 1 (mod19).

(c) If x144� 1 (mod 323), then x288= (x144)2� 1 (mod 323). This means that Euler's theorem is weaker than the
congruence we obtained using the Chinese remainder theorem.

This leads us to the following strengthening of Euler's theorem. If the prime factorization of n is n= p1
k1���prkr,

then xf(n)� 1 (modn), where

f(n)= lcm('(p1
k1); '(p2

k2); :::; '(pr
kr)):

Advanced comment. This f(n) is almost the minimal value �(n) such that x�(n) � 1 (mod n). The only
improvement that can be made is that, in the above, '(2m) may be replaced with 1

2
'(2m) if m > 3. This is

known as Carmichael's theorem. �
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Problem 4. Let a; b be positive integers.

(a) Suppose that xa� 1 (modn) and xb� 1 (modn). Show that xgcd(a;b)� 1 (modn).

(b) Use the previous result to �nd all solutions to x10� 1 (mod2017).

(c) On the other hand, there are 16 solutions to x10� 1 (mod2016). What is di�erent in this case?

Solution.

(a) By Bezout's identity, we �nd integers r; s such that ra+ sb= gcd(a; b). Hence,

xgcd(a;b)=xra+sb=(xa)r � (xb)s� 1r � 1s� 1 (modn):

(b) Note that a solution x is necessarily coprime to 2017. (Why?!) By Fermat's little theorem, x2016�1 (mod2017).
Since gcd(2016; 10) = 2, we conclude that x2� 1 (mod 2017). Since 2017 is a prime, this congruence has only
the solutions x��1 (mod2017). (We established this in Problem 2 of Homework 4. Make sure that you recall
the argument and why it is crucial that 2017 is a prime.)

(c) Again, a solution x is necessarily coprime to 2016. By Euler's theorem, x576 � 1 (mod 2016). Since gcd(576;
10)=2, we conclude that x2� 1 (mod2016). However, 2016 is not a prime and so this congruence actually has
more solutions than just x��1 (mod2016).

Comment. In fact, it has the 16 solutions

1; 127; 433; 449; 559; 575; 881; 1007; 1009; 1135; 1441; 1457; 1567; 1583; 1889; 2015

modulo 2016. Clearly, each of these also solves x10�1 (mod2016). Problem 9 below makes it transparent where
these �extra� solutions are coming from. In short, by the Chinese remainder theorem, the congruence modulo
2016= 25 � 32 � 7 breaks into congruences modulo 25, 32 and 7; in each of these three cases, we get at least the
two solutions �1, which we can combine in 2 � 2 � 2= 8 di�erent ways to get 8 solutions modulo 2016. That we
actually have 16=4 � 2 � 2 solutions modulo 2016 is due to the fact that x2� 1 (mod 25) actually has 4 instead
of just 2 solutions (namely, x��1;�15 (mod 25)). �

Problem 5.

(a) You wonder whether 33; 660; 239 is a prime. A (comparatively) quick computation shows that 233660238 �
20364778 (mod 33660239). What do you conclude?

(b) You wonder whether 39; 916; 801 is a prime. A quick computation shows that 239916800 � 1 (mod 39916801).
What do you conclude?

Solution.

(a) This proves that 33660239 is not a prime. Because, if it was a prime, then 233660238 � 1 (mod 33660239) by
Fermat's little theorem.

[Indeed, 33660239= 269 � 125; 131 but �nding that factorization is a more di�cult task!]

(b) We still don't know whether 39916801 is a prime or not. There is two possibilities: either 39916801 is a prime,
or 39916801 is a pseudoprime to base 2 (people also say that 2 is a �Fermat liar� in that case).

[Actually, 39916801 is a prime.] �
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Problem 6.

(a) Using Fermat's little theorem and base 3, show that 341 is not a prime.

(b) Is 341 a pseudoprime to the base 2?

These computations are tedious to do by hand. Do make sure though that the idea and the procedure are clear.

Solution.

(a) 3340� 56�/ 1 (mod341) so that, by Fermat's little theorem, 341 cannot be a prime.

Of course, computing that 3340 � 56 (mod 341) requires some work. In the absence of knowing the prime
factorization of 341, we resort to direct binary exponentiation (see comment below) and 340=(101010100)2=
256+64+16+4. Here are the intermediate values we get modulo 341: 32�9, 34�81, 38�82, 316�245, 332�9
(so that, now, the values repeat), 364� 81, 3128� 82, 3256� 245.

Useful observation. Note that we could have saved some work by exploiting 332�32 (mod341), which implies
330� 1 (mod341). Since 340� 10 (mod30), we �nd that 3340� 310=32 � 38� 56 (mod 341).

(b) We need to compute 2340 (mod 341). We proceed using binary exponentiation as in the previous part. The
values we get modulo 341 are: 22=4, 24= 16, 28= 256, 216= 64, 232=4, so that, again, values repeat.

In the end, we �nd that 2340� 1 (mod 341). This means that 341 is a pseudoprime to the base 2 (because we
already know that 341 is not an actual prime).

Useful observation. Again, we can save a lot of work by exploiting 232 � 22 (mod 341), which implies
230� 1 (mod341). As before, we conclude that 2340� 210=22 � 28� 1 (mod341).

Comment. If we know the factorization of 341 then we can cut down on our work a little bit by using the Chinese
remainder theorem and Euler's theorem (but realize that if we have to ask questions like whether 341 is a prime, then
we wouldn't know this factorization and wouldn't be able to apply these theorems). �

Problem 7.

(a) Among the numbers 1; 2; :::; 2016, how many are coprime to 2016?

(b) Carefully state Euler's theorem.

(c) If the prime factorization of n is n= p1
k1���prkr, what does �(n) evaluate to?

(d) Carefully state Wilson's theorem.

Solution.

(a) This just asks for �(2016).

(b) If n> 1 and gcd(a; n)= 1, then a�(n)� 1 (modn).

(c) If the prime factorization of n is n= p1
k1���prkr, then �(n) =n

�
1¡ 1

p1

�
���
�
1¡ 1

pr

�
.

(d) If p is a prime, then (p¡ 1)!�¡1 (mod p). �

Problem 8.

(a) What does it mean for n to be a pseudoprime to base a?

(b) What does it mean for n to be an absolute pseudoprime?

(c) Outline the Fermat primality test. What makes this a heuristic test?
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Solution.

(a) It means that n is composite but satis�es an � a (mod n). In other words, it behaves like a prime would by
Fermat's little theorem.

Sometimes the condition an� a (mod n) is replaced with an¡1� 1 (mod n). That makes no di�erence unless
gcd(a; n)=/ 1 (in which case we learned about a divisor of n).

(b) These are numbers which are pseudoprime to any base a> 1.

(c) Fermat primality test:

Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �possibly prime�
Algorithm:

Repeat k times:
Pick a random number a from f2; 3; :::; n¡ 2g.
If an¡1�/ 1 (modn), then stop and output �not prime�.

Output �possibly prime�.

The test is heuristic because it is not designed to decide with absolute certainty whether a number is a prime.
More speci�cally, if it claims that a number is composite, then we actually do have certainty that the number
is indeed composite (but don't know its factors). But the test is unable to prove that a number is prime; if we
choose the number of iterations k large enough, then we have strong reason to believe that n is a prime (if we
do not deal with an absolute pseudoprime [which are very rare] then there is only a probability of 2¡k that we
mistakenly label a composite number as probably prime). �

Problem 9.

(a) Using the Chinese remainder theorem, determine all solutions to x2� 1 (mod 105).

(b) Can you predict how many solutions the congruence x2� 1 (mod210) is going to have?

Solution.

(a) Note that 105= 3 � 5 � 7. By the Chinese remainder theorem, x is a solution to x2� 1 (mod 105) if and only if
x is a solution to the three congruences

x2� 1 (mod 3); x2� 1 (mod 5); x2� 1 (mod 7):

Since 3; 5; 7 are primes each of these only has the obvious solutions x � �1. (Again, we established this in
Problem 2 of Homework 4.) Using the Chinese remainder theorem, these combine in 2 � 2 � 2= 8 di�erent ways
to a solution modulo 105. For instance, one the 8 possibilities is

x�¡1 (mod 3); x� 1 (mod 5); x�¡1 (mod 7)
() x�¡1 � 5 � 7 � [(5 � 7)mod 3

¡1 ]

2

+1 � 3 � 7 � [(3 � 7)mod 5
¡1 ]

1

¡ 1 � 3 � 5 � [(3 � 5)mod 7
¡1 ]

1

=¡70+ 21¡ 15� 41 (mod 105):

Corresponding to it is the negative case x� 1 (mod 3), x�¡1 (mod 5), x� 1 (mod 7) which is equivalent to
x�¡41 (mod105).

Likewise, we determine all 8 solutions as follows:

x� 1 (mod 3); x� 1 (mod 5); x� 1 (mod 7) () x� 1 (mod105)
x� 1 (mod 3); x� 1 (mod 5); x�¡1 (mod 7) () x�¡29 (mod105)
x� 1 (mod 3); x�¡1 (mod 5); x� 1 (mod 7) () x�¡41 (mod105)
x� 1 (mod 3); x�¡1 (mod 5); x�¡1 (mod 7) () x� 34 (mod105)
x�¡1 (mod 3); x� 1 (mod 5); x� 1 (mod 7) () x�¡34 (mod105)
x�¡1 (mod 3); x� 1 (mod 5); x�¡1 (mod 7) () x� 41 (mod105)
x�¡1 (mod 3); x�¡1 (mod 5); x� 1 (mod 7) () x� 29 (mod105)
x�¡1 (mod 3); x�¡1 (mod 5); x�¡1 (mod 7) () x�¡1 (mod105)
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Note that, because each case has a negative, we only need to compute 4 of these 8 cases.

In summary, x2� 1 (mod105) has exactly the 8 solutions x��1;�29;�34;�41 modulo 105.

(b) Since 210=2 �3 �5 �7, we can again use the Chinese remainder theorem and argue as in the previous case. There
is just one di�erence: the congruence x2� 1 (mod 2) only has 1 solution (because 1�¡1 (mod 2)). Hence, we
�nd that the congruence x2� 1 (mod210) has 1 � 2 � 2 � 2=8 solutions.

A variation. On the other hand, x2� 1 (mod 3 � 5 � 7 � 19) will have 2 � 2 � 2 � 2= 16 solutions. �

Problem 10.

(a) Which number is represented by the continued fraction [1; 2; 1; 2; 1; 2]?

(b) Determine all convergents of [1; 2; 1; 2; 1; 2].

(c) Which number is represented by the in�nite continued fraction [1; 2; 1; 2; 1; 2; 1; 2; :::]?

(d) Compare, numerically, the �rst six convergents (computed above) to the value of the in�nite continued fraction.

Solution.

(a) [1; 2; 1; 2; 1; 2]= 1+
1

2+
1

1+
1

2+
1

1+
1

2

=
41
30

Comment. Of course, we can simplify this continued fraction directly. But that is a bit time consuming and
prone to errors. A better is way is to compute the convergents recursively as we do in the next part.

(b) The convergents are C0=1, C1= [1; 2]= 1+
1

2
=

3

2
, C2= [1; 2; 1]= 1+

1

2+
1

1

=
4

3
.

We can continue like that but the computations will get more involved. Instead, we should proceed recursively.
Recall from class that the convergents Cn=

pn
qn

of [a0; a1; a2; :::] are characterized by

pk= akpk¡1+ pk¡2
with p¡2=0; p¡1=1

and qk= akqk¡1+ qk¡2
with q¡2=1; q¡1=0

:

The corresponding calculations of pn and qn are as follows:

n ¡2 ¡1 0 1 2 3 4 5
an 1 2 1 2 1 2

pn 0 1 1 3 4 11 15 41
qn 1 0 1 2 3 8 11 30

Cn 1
3
2

4
3

11
8

15
11

41
30

(c) Write x= [1; 2; 1; 2; 1; 2; 1; 2; :::]. Then, x=1+ 1

2+
1

1+
1

2+
1

1+ :::

=1+
1

2+
1

x

.

The equation x= 1+
1

2+
1

x

simpli�es to x¡ 1 =
x

2x+1
. Further (note that, clearly x=/ ¡1

2
so that 2x+ 1 =/ 0)

simpli�es to (x¡ 1)(2x+1)=x or 2x2¡ 2x¡ 1= 0, which has the solutions x= 2� 4+8
p

4
=

1� 3
p

2
.

Since 1+ 3
p

2
� 1.366 and 1¡ 3

p

2
�¡0.366, we conclude that [1; 2; 1; 2; 1; 2; 1; 2; :::] = 1+ 3

p

2
.

(d) C0=1, C1=
3

2
= 1.5, C2=

4

3
� 1.333, C3=

11
8
= 1.375, C4=

15
11 � 1.364, C5=

41
30 � 1.367
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These values quickly approach 1+ 3
p

2
� 1.366 in the expected alternating fashion. �

Problem 11.

(a) Express the numbers 252
193 and ¡337

221 as a simple continued fraction.

(b) Is this the unique simple continued fraction representing 252
193? Explain!

Solution.

(a) The simplest way to obtain the continued fraction for 252
193 is via the Euclidian algorithm:

252= 1 � 193+ 59; 193= 3 � 59+ 16; 59= 3 � 16+ 11; 16= 1 � 11+5; 11= 2 � 5+1; 5= 5 � 1+ 0

Hence, 252
193 = [1; 3; 3; 1; 2; 5].

To determine a simple continued fraction for ¡337
221 , we �rst write ¡

337
221 =¡2+

105
221= ¡2 +

1
221
105

. We then proceed

using the Euclidian algorithm applied to 221
105 .

221= 2 � 105+ 11; 105= 9 � 11+6; 11= 1 � 6+ 5; 6= 1 � 5+ 1; 5= 5 � 1+0:

Combined, ¡337
221 = [¡2; 2; 9; 1; 1; 5].

(b) No, a �nite continued fraction can always be expressed in two ways because of the simple relation [a0;a1; a2; :::;
an] = [a0; a1; a2; :::; an¡ 1; 1], assuming an> 1. In this case, we also have 252

193 = [1; 3; 3; 1; 2; 4; 1]. �

� It is also a very good idea to review the problems from Homework 5 as well as the previous practice problems. �
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