
Notes for Lecture 1 Mon, 1/12/2026

Review: Matrix calculus

Example 1. Matrix multiplication is not commutative!

�
�
1 2
3 4

�
�
�
1 2
0 1

�
=
�
1 4
3 10

�
Multiplication (on the right) with that �almost identity matrix� is performing the column operation
C2+2C1)C2 (i.e. 2 times the first column is added to the second column).

�
�
1 2
0 1

�
�
�
1 2
3 4

�
=
�
7 10
3 4

�
Multiplication (on the left) with the same matrix is performing the row operation R1+2R2)R1.
First comment. This indicates a second interpretation of matrix multiplication: instead of taking linear
combinations of columns of the first matrix, we can also take linear combinations of rows of the second
matrix.
Second comment. The row operations we are doing during Gaussian elimination can be realized by
multiplying (on the left) with �almost identity matrices�.

Example 2. [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.
If you know about the dot product, do you see a connection with the first case?

Example 3. Suppose A is m � n and B is p � q. When does AB make sense? In that case,
what are the dimensions of AB?
AB makes sense if n= p. In that case, AB is a m� q matrix.

Example 4.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=

�
1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=

�
3 1
2 1

�
.

Example 5. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

In particular:

det(A)= 0 () A is not invertible
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Similarly, for n�n matrices A:

A is invertible (i.e. there is a matrix A¡1 such that AA¡1= I)
() det(A)=/ 0
() Ax= b has a unique solution (namely, x=A¡1b)

Comment. Why is it not common to write 1

A
instead of A¡1?

The notation 1

A
easily leads to ambiguities: for instance, should B

A
mean BA¡1 or should it mean A¡1B?

[Of course, one could try to avoid this by notations like B/A which would more clearly mean BA¡1. It's just
not common and doesn't have any real advantages.]

Example 6.24 1 2 3
4 5 6
7 8 9

3524 1 0 0
¡4 1 0
0 0 1

35=
24 ¡7 2 3
¡16 5 6
¡25 8 9

35
Multiplication (on the right) with that �almost identity matrix� is performing the column operation C1¡ 4C2)
C1 (i.e. ¡4 times the second column is added to the first column).24 1 0 0
¡4 1 0
0 0 1

3524 1 2 3
4 5 6
7 8 9

35=
24 1 2 3
0 ¡3 ¡6
7 8 9

35
Multiplication (on the left) with the same matrix is performing the row operation R2¡ 4R1)R2.
Comment (again). The row operations we are doing during Gaussian elimination can all be realized by multi-
plying (on the left) with �almost identity matrices�.

These matrices are called elementary matrices (they are obtained by performing a single ele-
mentary row operation on an identity matrix).

Elementary matrices are invertible because elementary row operations are reversible:24 1 0 0
2 1 0
0 0 1

35¡1=
24 1 0 0
¡2 1 0
0 0 1

35;
24 1 0 0
0 2 0
0 0 1

35¡1=
2664 1

1

2

1

3775;
24 0 1 0
1 0 0
0 0 1

35¡1=
24 0 1 0
1 0 0
0 0 1

35
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Notes for Lecture 2 Wed, 1/14/2026

Example 7. Let us do Gaussian elimination on A=
�
2 1
4 ¡6

�
until we have an echelon form:

A=

�
2 1
4 ¡6

�
 R2¡2R1)R2

�
2 1
0 ¡8

�
As last class, the row operation can be encoded by multiplication with an �almost identity matrix� E:�

1 0
¡2 1

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

E

�
2 1
4 ¡6

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

A

=

�
2 1
0 ¡8

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

U

Since
�

1 0
¡2 1

�¡1
=

�
1 0
2 1

�
(no calculation needed; this is the row operation R2+2R1)R2 which reverses our

above operation), this means that

A=E¡1U =

�
1 0
2 1

��
2 1
0 ¡8

�
:

We factored A as the product of a lower and an upper triangular matrix!

A=LU is known as the LU decomposition of A.

L is lower triangular, U is upper triangular.

If A is m�n, then L is an invertible lower triangular m�m matrix, and U is a usual echelon form of A.
Every matrix A has a LU decomposition (after possibly swapping some rows of A first).

� The matrix U is just the echelon form of A produced during Gaussian elimination.

� The matrix L can be constructed, entry-by-entry, by simply recording the row operations
used during Gaussian elimination. (No extra work needed!)

Example 8. Determine the LU decomposition of A=
�
1 2
3 4

�
.

Solution. A=
�
1 2
3 4

�
 R2¡3R1)R2

�
1 2
0 ¡2

�
translates into

�
1 0
¡3 1

��
1 2
3 4

�
=

�
1 2
0 ¡2

�
.

Since
�

1 0
¡3 1

�¡1
=

�
1 0
3 1

�
(no calculation needed!), we therefore have A=

�
1 0
3 1

��
1 2
0 ¡2

�
.

Example 9. Determine the LU decomposition of A=

24 1 1 2 1
3 2 7 2

¡2 6 ¡3 1

35.
Solution. We perform Gaussian elimination until we arrive at an echelon form:24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35
Observe that we can reverse both of these steps using the row operations R2+3R1)R2

R3¡ 2R1¡ 8R2)R3
.

Encoding these in L, the corresponding LU decomposition of A is

A=LU =

24 1
3 1
¡2 ¡8 1

3524 1 1 2 1
¡1 1 ¡1

9 ¡5

35:
Note that no further computation was required to obtain L. (The entries in the matrix L are precisely the
(negative) coefficients in the original row operations.)
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Comment. By contrast, combining the operations R2¡ 3R1)R2
R3+2R1)R3

and R3+8R2)R3 requires computation.

That is because we changeR2 in the first step, and then use the changedR2 in the second step. Indeed, note that24 1
0 1
0 8 1

3524 1
¡3 1
2 0 1

35=
24 1
¡3 1
¡22 8 1

35;
so the combined operations are R2¡ 3R1)R2

R3¡ 22R1+8R2)R3
(you can also see that directly from the operations).

On the other hand, there was no such complication when combining the reversed operations:

Combining R3¡ 8R2)R3 and
R2+3R1)R2
R3¡ 2R1)R3

simply results in R2+3R1)R2
R3¡ 2R1¡ 8R2)R3

, as used above.

The difference is that, here, we change R3 in the first step but then don't use the changed R3 in the second
step. In terms of matrix multiplication, we have24 1

3 1
¡2 0 1

3524 1
0 1
0 ¡8 1

35=
24 1

3 1
¡2 ¡8 1

35;
where, because of their special form, the product of the two lower triangular matrices is just �putting together�
the entries (unlike in the non-reversed product).

Review. The RREF (row-reduced echelon form) of A is obtained from an echelon form by

� scaling the pivots to 1, and then

� eliminating the entries above the pivots.

A typical RREF has the shape [� represents an entry that could be anything]24 1 � 0 � � 0 �
1 � � 0 �

1 �

35
Example 10. Let's compute the RREF of the 3� 4 matrix from Example 9.
Solution. 24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35

 
¡R2)R2
1
9
R3)R3

2664 1 1 2 1
0 1 ¡1 1

0 0 1 ¡5

9

3775  
R1¡2R3)R1

R2+R3)R2

26666664
1 1 0

19
9

0 1 0
4

9

0 0 1 ¡5

9

37777775  R1¡R2)R1

26666664
1 0 0

5

3

0 1 0
4

9

0 0 1 ¡5

9

37777775
Example 11. The RREF of A=

�
2 1
4 ¡6

�
from earlier is the 2� 2 identity matrix.

Comment. That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If
that isn't obvious to you, think about how you invert a matrix using Gaussian elimination (reviewed next).
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Notes for Lecture 3 Fri, 1/16/2026

Review. Recall the Gauss�Jordan method of computing A¡1. Starting with the augmented matrix
[A j I], we do Gaussian elimination until we obtain the RREF, which will be of the form [I j A¡1]
so that we can read off A¡1.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication
(on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF of
an invertible matrix is I, we have BA= I, which means that we must have B = A¡1. The other part of the
augmented matrix (which is I initially) gets multiplied with B=A¡1 as well, so that, in the end, it is B I=A¡1.
That's why we can read off A¡1!

For instance. To invert
�
2 1
4 ¡6

�
using the Gauss�Jordan method, we would proceed as follows:

�
2 1 1 0
4 ¡6 0 1

�
 R2¡2R1)R2

�
2 1 1 0
0 ¡8 ¡2 1

�
 

1
2
R1)R1

¡1
8
R2)R2

24 1
1

2

1

2
0

0 1
1

4
¡1

8

35  
R1¡ 1

2
R2)R1

24 1 0
3

8

1

16

0 1
1

4
¡1

8

35
We conclude that

�
2 1
4 ¡6

�¡1
=

24 3
8

1
16

1
4
¡1
8

35.
Of course, for 2� 2 matrices it is much simpler to use the formula

�
a b
c d

�¡1
=

1

ad¡ bc

�
d ¡b
¡c a

�
.

Review: Vector spaces, bases, dimension, null spaces

Review.

� Vectors are things that can be added and scaled.

� Hence, given vectors v1; :::;vn, the most general we can do is form the linear combination
�1v1 + ::: + �nvn. The set of all these linear combinations is the span of v1; :::; vn,
denoted by spanfv1; :::;vng.

� Vector spaces are spans.

Equivalently. Vector spaces are sets of vectors so that the result of adding and scaling remains within
that set.
Homework. Of course, the latter is a very informal statement. Revisit the formal definition, probably
consisting of a list of axioms, and observe how that matches with the above (for instance, several of
the axioms are concerned with addition and scaling satisfying the �expected� rules).

� Recall that vectors from a vector space V form a basis of V if and only if

� the vectors span V , and

� the vectors are (linearly) independent.

Equivalently. v1; :::;vn from V form a basis of V if and only if every vector in V can be expressed as
a unique linear combination of v1; :::;vn.
Just checking. Make sure that you can define precisely what it means for vectors v1; :::; vn to be
independent.

� The dimension of a vector space V is the number of vectors in a basis for V .

No matter what basis one chooses for V , it always has the same number of vectors.

Armin Straub
straub@southalabama.edu

5



Example 12. R3 is the vector space of all vectors with 3 real entries.

R itself refers to the set of real numbers. We will later also discuss C, the set of complex numbers.

The standard basis of R3 is

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35. The dimension of R3 is 3.

Review. The null space null(A) of a matrix A consists of those vectors x such that Ax=0.
Make sure that you see why null(A) is a vector space. [For instance, if you pick two vectors in null(A) why is
it that the sum of them is in null(A) again?]

Example 13. What is null(A) if the matrix A is invertible?

Solution. If A is invertible, then Ax=0 has the unique solution x=A¡10=0.
Hence, null(A)= f0g which is the trivial vector space (consisting of only the null vector) and has dimension 0.

Example 14. Compute a basis for null(A) where A=
24 ¡1 0 2

2 ¡3 2
1 0 ¡2

35.
Solution. We perform row operations and obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =

R2+2R1)R2
R3+R1)R3

null

0@24 ¡1 0 2
0 ¡3 6
0 0 0

351A =

¡R1)R1

¡1
3
R2)R2

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A:
From the RREF, we can now read off the general solution to Ax=0:

� x1 and x2 are pivot variables. [For each we have an equation expressing it in terms of the other variables;
for instance, x1¡ 2x3=0 tells us that x1=2x3.]

� x3 is a free variable. [There is no equation forcing a value on x3.]

� Hence, without computation, we see that the general solution is

24 2x3
2x3
x3

35.
In other words, a basis is

24 2
2
1

35.
Comment. We are starting with the three equations ¡x1 + 2x3 = 0, 2x1 ¡ 3x2 + 2x3 = 0, x1 ¡ 2x3 = 0.
Performing row operations on the matrix is the same as combining these equations (with the objective to form
simpler equations by eliminating variables).

Example 15. Compute a basis for null

0@24 2 0 2
2 0 2
1 0 1

351A.
Solution.

null

0@24 2 0 2
2 0 2
1 0 1

351A =

R2¡R1)R2

R3¡ 1
2
R1)R3

null

0@24 2 0 2
0 0 0
0 0 0

351A =
1
2
R1)R1

null

0@24 1 0 1
0 0 0
0 0 0

351A

This time, x2 and x3 are free variables. The general solution is

24 ¡x3x2
x3

35=x2

24 0
1
0

35+ x3

24 ¡10
1

35.
Hence, a basis is

24 0
1
0

35;
24 ¡10

1

35.
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Notes for Lecture 4 Wed, 1/21/2026

Review: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.
More precisely, we find a basis of eigenvectors for the �-eigenspace null(A¡�I).

Example 16. A=

24 4 0 2
2 2 2
1 0 3

35 has one eigenvector that is �easy� to see. Do you see it?

Solution. Note that A

24 0
1
0

35=
24 0
2
0

35=2

24 0
1
0

35. Hence,
24 0
1
0

35 is a 2-eigenvector.

Just for contrast. Note that A

24 0
0
1

35=
24 2
2
3

35=/ �
24 0
0
1

35. Hence,
24 0
0
1

35 is not an eigenvector.

Suppose that A is n�n and has independent eigenvectors x1; :::;xn.

Then A can be diagonalized as A=PDP¡1, where

� the columns of P are the eigenvectors, and

� the diagonal matrix D has the eigenvalues on the diagonal.

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.
Comment. If you don't quite recall why these choices result in the diagonalization A=PDP¡1, note that the
diagonalization is equivalent to AP =PD.

� Put the eigenvectors x1; :::;xn as columns into a matrix P .

Axi=�ixi =) A

24 j j
x1 ��� xn
j j

35 =

24 j j
�1x1 ��� �nxn
j j

35

=

24 j j
x1 ��� xn
j j

35
2664 �1

���
�n

3775
� In summary: AP =PD
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Example 17. Let A=

24 4 0 2
2 2 2
1 0 3

35.
(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) Diagonalize A. That is, determine matrices P and D such that A=PDP¡1.

Solution.

(a) By expanding by the second column, we find that the characteristic polynomial det(A¡�I) is��������������
4¡� 0 2

2 2¡� 2
1 0 3¡�

��������������=(2¡�)
�������� 4¡� 2

1 3¡�

��������=(2¡�)[(4¡�)(3¡�)¡ 2]= (2¡�)2(5¡�):

Hence, the eigenvalues are �=2 (with multiplicity 2) and �=5.
Comment. At this point, we know that we will find one eigenvector for � = 5 (more precisely, the 5-
eigenspace definitely has dimension 1). On the other hand, the 2-eigenspace might have dimension 2 or
1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

� The 5-eigenspace is null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A. Proceeding as in Example 14, we obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =
RREF

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A= span

8<:
24 2
2
1

359=;:

In other words, the 5-eigenspace has basis

24 2
2
1

35.
� The 2-eigenspace is null

0@24 2 0 2
2 0 2
1 0 1

351A. Proceeding as in Example 15, we obtain

null

0@24 2 0 2
2 0 2
1 0 1

351A =
RREF

null

0@24 1 0 1
0 0 0
0 0 0

351A= span

8<:
24 0
1
0

35;
24 ¡10

1

359=;
In other words, the 2-eigenspace has basis

24 0
1
0

35;
24 ¡10

1

35.
Comment. So, indeed, the 2-eigenspace has dimension 2. In particular, A is diagonalizable.

(b) A possible choice is P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
Comment. However, many other choices are possible and correct. For instance, the order of the eigen-
values in D doesn't matter (as long as the same order is used for P ). Also, for P , the columns can be
chosen to be any other set of eigenvectors.
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Notes for Lecture 5 Fri, 1/23/2026

Example 18. (extra practice) Diagonalize, if possible, the matrices

A=

24 3 4 1
0 2 0
1 4 3

35, B=

24 0 0 1
0 0 0
0 0 0

35, C =

24 1 0 1
0 0 0
0 0 0

35:

Solution. For instance, A=PDP¡1 with P =

24 1 ¡4 ¡1
0 1 0
1 0 1

35 and D=

24 4
2
2

35. B is not diagonalizable.

For instance, C =PDP¡1 with P =

24 1 0 ¡1
0 1 0
0 0 1

35 and D=

24 1
0
0

35.

Review: Computing determinants using cofactor expansion

Review. Let A be an n�n matrix. The determinant of A, written as det(A) or jAj, is a number
with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x (for all b)
() Ax=0 is only solved by x=0

Example 19.
�������� a b
c d

��������= ad¡ bc

Example 20. Compute

��������������
1 2 0
3 ¡1 2
2 0 1

�������������� by cofactor expansion.
Solution. We expand by the first row:��������������

1 2 0
3 ¡1 2
2 0 1

��������������=1 �

��������������
+
¡1 2
0 1

��������������¡ 2 �
��������������

¡
3 2
2 1

��������������+0 �

��������������
+

3 ¡1
2 0

��������������
=
i.e.

1 �
�������� ¡1 2
0 1

��������¡ 2 � �������� 3 2
2 1

��������+0 �
�������� 3 ¡1
2 0

��������=1 � (¡1)¡ 2 � (¡1)+0=1

Each term in the cofactor expansion is �1 times an entry times a smaller determinant (row and
column of entry deleted).

The �1 is assigned to each entry according to

266664
+ ¡ + ���
¡ + ¡
+ ¡ +
��� ���

377775.
Solution. We expand by the second column:��������������

1 2 0
3 ¡1 2
2 0 1

��������������=¡2 �
��������������

¡
3 2
2 1

��������������+(¡1) �

��������������
1 0
+

2 1

��������������¡ 0 �
��������������
1 0
3 2
¡

��������������
= ¡ 2 � (¡1)+ (¡1) � 1¡ 0=1
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Example 21. Compute

������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������.
Solution. We can expand by the second column:������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������=¡0
��������������
0 1 5
0 2 1
2 8 5

��������������+2

��������������
1 3 4
0 2 1
2 8 5

��������������¡ 0
��������������
1 3 4
0 1 5
2 8 5

��������������+0

��������������
1 3 4
0 1 5
0 2 1

��������������
[Of course, you don't have to spell out the 3� 3 matrices that get multiplied with 0.]
We can compute the remaining 3� 3 matrix in any way we prefer. One option is to expand by the first column:

2

��������������
1 3 4
0 2 1
2 8 5

��������������=2

�
+1

�������� 2 1
8 5

��������+2
�������� 3 4
2 1

��������
�
=2(1 � 2+2 � (¡5))=¡16

Comment. For cofactor expansion, choosing to expand by the second column is the best choice because this
column has more zeros than any other column or row.

The determinant of a triangular matrix is the product of the diagonal entries.

Why? Can you explain this (you can use the next example) using cofactor expansion?

Example 22. Compute

������������������
1 0 3 ¡1
0 3 1 5
0 0 ¡2 1
0 0 0 5

������������������.

Solution. Since the matrix is (upper) triangular,

������������������
1 0 3 ¡1
3 1 5
¡2 1

5

������������������=1 � 3 � (¡2) � 5=¡30.

Review.

� Effect of row (or column) operations on determinant.

� det(AB)= det(A)det(B)

� In particular, the LU decomposition provides us with a way to compute determinants:

If A=LU , then det(A)=det(L)det(U) and the latter determinants are just products of
diagonal entries (because both L and U are triangular).

Comment. Unless a row swap is required, we can compute the LU decomposition of A = LU using
only row operations of the form Ri+ cRj)Ri (those don't change the determinant!).
In that case, the matrix L will have 1's on the diagonal. In particular, det(L)= 1.
Consequently, in that case, det(A)=det(U).
Practical comment. For larger matrices, cofactor expansion is a terribly inefficient way of computing
determinants. Instead, Gaussian elimination (i.e. LU decomposition) is much more efficient.
On the other hand, cofactor expansion is a good choice when working by hand with small matrices.
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Notes for Lecture 6 Mon, 1/26/2026

Example 23. (review) If A=
24 1 4
2 5
3 6

35, then its transpose is AT =
�
1 2 3
4 5 6

�
.

Recall that (AB)T =BTAT . This reflects the fact that, in the column-centric versus the row-centric interpre-
tation of matrix multiplication, the order of the matrices is reversed.
Comment. When working with complex numbers, the fundamental role is not played by the transpose but by
the conjugate transpose instead (we'll see that in our discussion of orthogonality): A�=AT .

For instance, if A=
�
1¡ 3i 5i
2+ i 3

�
, then A�=

�
1+3i 2¡ i
¡5i 3

�
.

Orthogonality

The inner product and distances

Definition 24. The inner product (or dot product) of v, w in Rn:

v �w = vTw= v1w1+ :::+ vnwn:

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity
and distributivity.
In addition: v �w=w �v.

Example 25.
24 1
2
3

35�
24 2
¡1
4

35=2¡ 2+ 12= 12

Definition 26.

� The norm (or length) of a vector v in Rn is

kvk = v �v
p

= v1
2+ :::+ vn

2
p

:

� The distance between points v and w in Rn is

dist(v ;w) = kv¡wk:

v

w

v −w

Example 27. For instance, in R2, dist
��

x1
y1

�
;
�
x2
y2

��
=






� x1¡x2

y1¡ y2

�





= (x1¡x2)2+(y1¡ y2)
2

q
.

Example 28. Write kv¡wk2 as a dot product, and multiply it out.

Solution. kv¡wk2=(v¡w) � (v¡w)=v �v¡v �w¡w �v+w �w= kvk2¡ 2v �w+ kwk2

Comment. This is a vector version of (x¡ y)2= x2¡ 2xy+ y2.
The reason we were careful and first wrote ¡v �w¡w �v before simplifying it to ¡2v �w is that we should not
take rules such as v �w=w �v for granted. For instance, for the cross product v�w, that you may have seen
in Calculus, we have v�w=/ w�v (instead, v�w=¡w�v).

Armin Straub
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Orthogonal vectors

Definition 29. v and w in Rn are orthogonal if

v �w=0:

Why? How is this related to our understanding of right angles?
Pythagoras!
v and w are orthogonal
() kvk2+ kwk2= kv¡wk2||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=kvk2¡2v�w+kwk2
(by previous example)

() ¡2v �w=0

() v �w=0

v

w

v −w

Definition 30. We say that two subspaces V and W of Rn are orthogonal if and only if every
vector in V is orthogonal to every vector in W .

The orthogonal complement of V is the space V ? of all vectors that are orthogonal to V .
Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our
discussion in the next example which leads to Theorem 32. Namely, every space V can be written as V =col(A)
for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V ). It then follows
that V ?=null(AT) (which is clearly a space).

Example 31. Determine a basis for the orthogonal complement of V = span

(24 1
2
1

35;
24 3
1
2

35
)
.

Solution. The orthogonal complement V ? consists of all vectors

24 x1
x2
x3

35 that are orthogonal to
24 1
2
1

35 and
24 3
1
2

35.
Using the dot product, this means we must have

24 1
2
1

35�
24 x1
x2
x3

35=0 as well as

24 3
1
2

35�
24 x1
x2
x3

35=0.

Note that this is equivalent to the equations 1x1+2x2+1x3=0 and 3x1+1x2+2x3=0.

In matrix-vector form, these two equations combine to
�
1 2 1
3 1 2

�24 x1
x2
x3

35=�
0
0

�
.

This is the same as saying that

24 x1
x2
x3

35 has to be in null
��

1 2 1
3 1 2

��
. This means that V ?=null

��
1 2 1
3 1 2

��
.

[Note that we have done no computations up to this point! Instead, we have derived Theorem 32 below.]

We compute (fill in the work!) that V ?=null
��

1 2 1
3 1 2

��
=

RREF
null
��

1 0 3/5
0 1 1/5

��
= span

(24 ¡3/5¡1/5
1

35
)
.

Check.

24 ¡3/5¡1/5
1

35 is indeed orthogonal to both

24 1
2
1

35 and
24 3
1
2

35.
Note. If

24 x1
x2
x3

35 is orthogonal to both basis vectors

24 1
2
1

35 and
24 3
1
2

35, then it is orthogonal to every vector in V .

Indeed, vectors in V are of the form v=a

24 1
2
1

35+b
24 3
1
2

35and we have v �
24 x1
x2
x3

35=a
24 1
2
1

35�
24 x1
x2
x3

35
=0

+b

24 3
1
2

35�
24 x1
x2
x3

35
=0

=0.

Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?
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The following theorem follows by the same reasoning that we used in the previous example.

In that example, we started with V = col

 24 1 3
2 1
1 2

35
!
and found that V ?=null

��
1 2 1
3 1 2

��
.

Theorem 32. If V = col(A), then V ?= null(AT).
In particular, if V is a subspace of Rn with dim(V )= r, then dim(V ?)=n¡ r.

For short. col(A)?=null(AT )
Note that the second part can be written as dim(V )+dim(V ?)=n.
To see that this is true, suppose we choose the columns of A to be a basis of V . If V is a subspace of Rn with
dim(V )= r, then A is a r�n matrix with r pivot columns. Correspondingly, AT is a n� r matrix with r pivot
rows. Since n>r there are n¡r free variables when computing a basis for null(AT). Hence, dim(V ?)=n¡ r.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in R5. Determine the
dimension of V and its orthogonal complement V ?.

Solution. This means that dimV =3. By Theorem 32, we have dimV ?=5¡ 3=2.

Example 34. Determine a basis for the orthogonal complement of (the span of)

24 1
2
1

35.
Solution. Here, V = span

(24 1
2
1

35
)

and we are looking for the orthogonal complement V ?.

Since V = col

 24 1
2
1

35
!
, it follows from Theorem 32 that V ?=null([ 1 2 1 ]).

Computing a basis for null([ 1 2 1 ]) is easy since [ 1 2 1 ] is already in RREF.

Note that the general solution to [ 1 2 1 ]x=0 is

24 ¡2s¡ ts
t

35= s

24 ¡21
0

35+ t

24 ¡10
1

35.
A basis for V ?=null([ 1 2 1 ]) therefore is

24 ¡21
0

35;
24 ¡10

1

35.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector

24 1
2
1

35.
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straub@southalabama.edu

13



Notes for Lecture 7 Wed, 1/28/2026

The fundamental theorem

Review. The four fundamental subspaces associated with a matrix A are

col(A); row(A); null(A); null(AT):

Note that row(A)= col(AT ). (In particular, we usually write vectors in row(A) as column vectors.)

Comment. null(AT) is called the left null space of A.
Why that name? Recall that, by definition x is in null(A) () Ax=0.

Likewise, x is in null(AT ) () ATx=0 () xTA=0.

[Recall that (AB)T =BTAT . In particular, (ATx)T =xTA, which is what we used in the last equivalence.]

Review. The rank of a matrix is the number of pivots in its RREF.
Equivalently, as showcased in the next result, the rank is the dimension of either the column or the row space.

Theorem 35. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m�n matrix of rank r.

� dim col(A)= r (subspace of Rm)

� dim row(A)= r (subspace of Rn) row(A)= col(AT)

� dimnull(A)=n¡ r (subspace of Rn)

� dimnull(AT)=m¡ r (subspace of Rm)

Example 36. Let A=
24 1 2
2 4
3 6

35. Determine bases for all four fundamental subspaces.

Solution. Make sure that, for such a simple matrix, you can see all of these that at a glance!

col(A)= span

(24 1
2
3

35
)
, row(A)= span

n�
1
2

�o
, null(A)= span

n�
¡2
1

�o
, null(AT)= span

(24 ¡21
0

35;
24 ¡30

1

35
)

Important observation. The basis vectors for row(A) and null(A) are orthogonal!
�
¡2
1

�
�
�
1
2

�
=0

The same is true for the basis vectors for col(A) and null(AT ):
24 1
2
3

35�
24 ¡21

0

35=0 and

24 1
2
3

35�
24 ¡30

1

35=0

Always. Vectors in null(A) are orthogonal to vectors in row(A). In short, null(A) is orthogonal to row(A).
Why? Suppose that x is in null(A). That is, Ax=0. But think about what Ax=0 means (row-product rule).
It means that the inner product of every row with x is zero. Which implies that x is orthogonal to the row space.

Theorem 37. (Fundamental Theorem of Linear Algebra, Part II)

� null(A) is orthogonal to row(A). (both subspaces of Rn)

Note that dimnull(A)+dimrow(A)=n. Hence, the two spaces are orthogonal complements.

� null(AT) is orthogonal to col(A).
Again, the two spaces are orthogonal complements. (This is just the first part with A replaced by AT .)
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Example 38. Let A=
24 1 2 1 4
2 4 0 2
3 6 0 3

35. Check that null(A) and row(A) are orthogonal complements.

Solution.24 1 2 1 4
2 4 0 2
3 6 0 3

35  
R2¡2R1)R2

R3¡3R1)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 ¡3 ¡9

35  
R3¡ 3

2
R2)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 0 0

35
 

¡1
2
R2)R2

24 1 2 1 4
0 0 1 3
0 0 0 0

35  R1¡R2)R1

24 1 2 0 1
0 0 1 3
0 0 0 0

35
Hence, null(A)= span

8>><>>:
266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775
9>>=>>;, row(A)= span

8>><>>:
266664
1
2
0
1

377775;
266664
0
0
1
3

377775
9>>=>>;.

null(A) and row(A) are indeed orthogonal, as certified by:266664
¡2
1
0
0

377775�
266664
1
2
0
1

377775=0;

266664
¡2
1
0
0

377775�
266664
0
0
1
3

377775=0;

266664
¡1
0
¡3
1

377775�
266664
1
2
0
1

377775=0;

266664
¡1
0
¡3
1

377775�
266664
0
0
1
3

377775=0:

In fact, null(A) and row(A) are orthogonal complements because the dimensions add up to 2+2=4.

In particular,

266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775;
266664
1
2
0
1

377775;
266664
0
0
1
3

377775 form a basis of all of R4.

Example 39. (extra) Determine bases for all four fundamental subspaces of

A=

24 1 2 1 3
2 4 0 1
3 6 0 1

35:
Verify all parts of the Fundamental Theorem, especially that null(A) and row(A) (as well as
null(AT) and col(A)) are orthogonal complements.

Partial solution. One can almost see that rank(A) = 3. Hence, the dimensions of the fundamental subspaces
are :::
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Notes for Lecture 8 Fri, 1/30/2026

Consistency of a system of equations

Example 40. (warmup)
24 1 2
3 1
0 5

35�� x1
x2

�
=x1

24 1
3
0

35+x2

24 2
1
5

35
Note that this means that the system
of equations

x1 + 2x2 = 1
3x1 + x2 = 1

5x2 = 1
can also be written as

24 1 2
3 1
0 5

35�� x1
x2

�
=

24 1
1
1

35:
[This was the motivation for introducing matrix-vector multiplication.]

In the same way, any system can be written as Ax= b, where A is a matrix and b a vector.
In particular, this makes it obvious that:

Ax= b is consistent () b is in col(A)

Recall that, by the FTLA, col(A) and null(AT) are orthogonal complements.

Theorem 41. Ax= b is consistent () b is orthogonal to null(AT)

Proof. Ax= b is consistent () b is in col(A) ()
FTLA

b is orthogonal to null(AT)

Note. b is orthogonal to null(AT) means that yTb=0 whenever yTA=0. Why?!

Example 42. Let A=
24 1 2
3 1
0 5

35. For which b does Ax= b have a solution?

Solution. (old) 24 1 2 b1
3 1 b2
0 5 b3

35  R2¡3R1)R2

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 5 b3

35  R3+R2)R3

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 0 ¡3b1+ b2+ b3

35
So, Ax= b is consistent if and only if ¡3b1+ b2+ b3=0.

Solution. (new) We determine a basis for null(AT):�
1 3 0
2 1 5

�
 R2¡2R1)R2

�
1 3 0
0 ¡5 5

�
 ¡1

5
R2)R2

�
1 3 0
0 1 ¡1

�
 R1¡3R2)R1

�
1 0 3
0 1 ¡1

�

We read off from the RREF that null(AT) has basis
24 ¡31

1

35.
b has to be orthogonal to null(AT ). That is, b �

24 ¡31
1

35=0. As above!
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Comment. Below is how we can use Sage to (try and) solve Ax= b for b=

24 1
1
2

35 and b=
24 1
1
1

35.
>>> A = matrix([[1,2],[3,1],[0,5]])

>>> A.solve_right(vector([1,1,2]))�
1
5
;
2
5

�
>>> A.solve_right(vector([1,1,1]))

ValueError: matrix equation has no solutions

During handling of the above exception, another exception occurred:

ValueError: matrix equation has no solutions

Armin Straub
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Notes for Lecture 9 Mon, 2/2/2026

Least squares

Example 43. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope
for a perfect match.
For instance, Ax= b with 24 1 2

3 1
0 5

35x=
24 1
1
1

35
has no solution:

�
24 1
1
1

35 is not in col(A) since
24 1
1
1

35�
24 ¡31

1

35=/ 0 (see previous example).

� Instead of giving up, we want the x which makesAx and b as close as possible.

� Such x is characterized by the error Ax¡ b being orthogonal to col(A)
(i.e. all possible Ax).

Ax

b

Definition 44. x̂ is a least squares solution of the system Ax= b if x̂ is such that Ax̂¡ b is
as small as possible (i.e. minimal norm).

� If Ax= b is consistent, then x̂ is just an ordinary solution. (in that case, Ax̂¡ b= 0)

� Interesting case: Ax= b is inconsistent. (in particular, if the system is overdetermined)

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares
solutions for all systems Ax= b.

Theorem 45. x̂ is a least squares solution of Ax= b
() ATAx̂=ATb (the normal equations)

Proof.
x̂ is a least squares solution of Ax= b
() Ax̂¡ b is as small as possible

() Ax̂¡ b is orthogonal to col(A)

()
FTLA

Ax̂¡ b is in null(AT)
() AT(Ax̂¡ b)=0
() ATAx̂=ATb �
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Example 46. Find the least squares solution to Ax= b, where

A=

24 1 1
¡1 1
0 0

35; b=

24 2
1
1

35:
Solution. First, ATA=

�
1 ¡1 0
1 1 0

�24 1 1
¡1 1
0 0

35=�
2 0
0 2

�
and ATb=

�
1 ¡1 0
1 1 0

�24 2
1
1

35=�
1
3

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
2 0
0 2

�
x̂=

�
1
3

�
.

Solving, we immediately find x̂=
�
1/2
3/2

�
.

Check. Since Ax̂=

24 2
1
0

35, the error is Ax̂¡ b=
24 0

0
¡1

35. Recall that the error must be orthogonal to col(A)!

This error is indeed orthogonal to col(A) because
24 0

0
¡1

35�
24 1
¡1
0

35=0 and

24 0
0
¡1

35�
24 1
1
0

35=0.

Comment. Why are the normal equations so particularly simple (compare with example below for the typical
case) here? Note how each entry of the product ATA is computed as the dot product of two columns of A
(matrix products of a row of AT times a column of A). That ATA is a diagonal matrix reflects the fact that
the two columns of A are orthogonal to each other.

Example 47. Find the least squares solution to Ax= b, where

A=

24 1 2
3 1
0 5

35; b=

24 1
1
1

35:
Solution. First, ATA=

�
1 3 0
2 1 5

�24 1 2
3 1
0 5

35=�
10 5
5 30

�
and ATb=

�
1 3 0
2 1 5

�24 1
1
1

35=�
4
8

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
10 5
5 30

�
x̂=

�
4
8

�
.

Since
�
10 5
5 30

�¡1
=

1

275

�
30 ¡5
¡5 10

�
=

1

55

�
6 ¡1
¡1 2

�
, we find x̂= 1

55

�
6 ¡1
¡1 2

��
4
8

�
=

1

55

�
16
12

�
.

Check. Since Ax̂= 1

55

24 40
60
60

35, the error Ax̂¡ b= 1

55

24 ¡15
5
5

35= 1

11

24 ¡31
1

35must be orthogonal to col(A).

The error is indeed orthogonal to col(A) because
24 1
3
0

35� 111
24 ¡31

1

35=0 and

24 2
1
5

35� 111
24 ¡31

1

35=0.
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Any serious linear algebra problems are done by a machine. Let us see how to use the open-source
computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also just use
the input field on our course website.
Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.

Let's revisit Example 38 and let Sage do the work for us:

>>> A = matrix([[1,2,1,4],[2,4,0,2],[3,6,0,3]])

>>> A.rref()0@ 1 2 0 1
0 0 1 3
0 0 0 0

1A
Similarly, if we wanted to compute a basis for null(AT), we can simply do:

>>> A.transpose().rref()0BBBBBBBB@
1 0 0

0 1
3
2

0 0 0
0 0 0

1CCCCCCCCA
Here are some other standard things we might be interested in (compare with Example 17):

>>> A = matrix([[4,0,2],[2,2,2],[1,0,3]])

>>> A.eigenvalues()

[5; 2; 2]

>>> A.eigenvectors_right()��
5;

��
1; 1;

1
2

��
; 1

�
; (2; [(1; 0; ¡ 1); (0; 1; 0)]; 2)

�
>>> A.eigenmatrix_right()0BBBB@

24 5 0 0
0 2 0
0 0 2

35;
266664

1 1 0
1 0 1
1
2
¡1 0

377775
1CCCCA

>>> A.rank()

3

>>> A.determinant()

20

>>> A.inverse()0BBBBBBBBBB@
3
10

0 ¡1
5

¡1
5

1
2
¡1
5

¡ 1
10

0
2
5

1CCCCCCCCCCA
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Application: least squares lines

Given data points (xi; yi), we wish to find optimal parameters a; b such that yi�a+ bxi for all i.

Example 48. Determine the line that �best fits� the data points (2; 1); (5; 2); (7; 3); (8; 3).
Comment. Can you see that there is no line fitting the data perfectly? (Check out the last two points!)

Solution. We need to determine the values a; b for the best-fitting line y= a+ bx.
If there was a line that fit the data perfectly, then:

a+2b=1 (2; 1)

a+5b=2 (5; 2)

a+7b=3 (7; 3)

a+8b=3 (8; 3)

In matrix form, this is:

266664
1 x1
1 x2
1 x3
1 x4

377775
design matrixX

�
a
b

�
=

266664
y1
y2
y3
y4

377775
observation
vector y

(writing the points as (xi; yi))

Using our points, these equations become

266664
1 2
1 5
1 7
1 8

377775� a
b

�
=

266664
1
2
3
3

377775. [This system is inconsistent (as expected).]

We compute a least squares solution.

XTX =

�
1 1 1 1
2 5 7 8

�266664
1 2
1 5
1 7
1 8

377775=�
4 22
22 142

�
; XTy=

�
1 1 1 1
2 5 7 8

�266664
1
2
3
3

377775=�
9
57

�
:

Solving the normal equations
�
4 22
22 142

��
a
b

�
=

�
9
57

�
, we find

�
a
b

�
=

�
2/7
5/14

�
.

Hence, the least squares line is y= 2

7
+

5

14
x.

The plot above shows our points together with this line. It does look like a very good fit!
Important comment. In what sense is this the line of �best fit�? By computing a least squares solution the way
we do, we are minimizing the error y¡X

�
a
b

�
. The components of that error are yi¡ (a+ bxi).

Hence, we see that we are minimizing the residual sum of squares SSres=
P

i [yi¡ (a+ bxi)]
2.

Also see the discussion after the next example (where we swap the role of x and y) as well as the example at
the beginning of next class (where we discuss making predictions and why minimizing SSres corresponds to
minimizing the error of those predictions).
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