Notes for Lecture 9 Mon, 2/2/2026

Least squares

Example 43. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope
for a perfect match.

For instance, Ax = b with

1 2 1
31 [z=| 1
05 1

has no solution:

1 1 -3
° { 1 } is not in col(A) since { 1 } { 1 }5&0 (see previous example).
1 1 1

b

e Instead of giving up, we want the & which makes Ax and b as close as possible.

e Such z is characterized by the error Ax — b being orthogonal to col(A)
(i.e. all possible Ax).

Definition 44. x is a least squares solution of the system Ax =b if & is such that Az —b is
as small as possible (i.e. minimal norm).

e If Ax=>b is consistent, then & is just an ordinary solution. (in that case, A& — b=0)

e Interesting case: Ax = b is inconsistent. (in particular, if the system is overdetermined)

| The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares
solutions for all systems Ax =b.

Theorem 45. « is a least squares solution of Ax =b
<= ATAz = A0 (the normal equations)

Proof.
@ is a least squares solution of Az =>
<= A% — b is as small as possible

<= A& — b is orthogonal to col(A)
FTLA

<= Az —bisin null(AT)

< AT(A% -b)=0

— ATAz = AT O
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Example 46. Find the least squares solution to Ax = b, where

1 1 2
A= —1 1], b=|1
0 O 1

Solution. Fist, ATA—[ 1 7 g}[fl i}:[g 0 and aTp=[ 1 ! g}mzm.
0O O 1

Hence, the normal equations ATA% = ATb take the form [ 3 (2) }:i: :[ ; }

Solving, we immediately find & :{ ;;3 }

2 0
Check. Since Az :[ 1 }, the error is Az — b :{ 0 ] Recall that the error must be orthogonal to col(A)!
0 -1

0 1 0 1
This error is indeed orthogonal to col(A) because [ 0 } [ -1 }— 0 and { 0 } [ 1 }—O.

-1 0 -1 0
Comment. Why are the normal equations so particularly simple (compare with example below for the typical
case) here? Note how each entry of the product ATA is computed as the dot product of two columns of A

(matrix products of a row of A7 times a column of A). That ATA is a diagonal matrix reflects the fact that
the two columns of A are orthogonal to each other.

Example 47. Find the least squares solution to Ax = b, where

1 2 1
A= 31|, b=|1
05 1
Solution. First, ATA=| 1 30 :13? =| 10 5 |and ATp=| L 30
' ! 1215 05_530 1215
4
8

Hence, the normal equations ATA% = ATb take the form [ 05 }:f: :{ }
d

-1
: 10 5 _ 13 —-5]_1[ 6 -1 a1 6 —11][4]_ 116
Smce[ 5 30} _275[75 10 }_55[71 2 }’Wef'n w_55[71 2 }{8}_55[12}'

. . 1| 40 . 1| —15 1] —3
Check. Since Ax =—| 60 |, theerror A& —b=—| 5 |=77| 1 | must be orthogonal to col(A).
60 5

1 -3 2 -3
The error is indeed orthogonal to col(A) because [ 3 ] i{ 1 ]:O and { 1 ] %{ 1 }:O.
0 5 1
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Any serious linear algebra problems are done by a machine. Let us see how to use the open-source
computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also just use
the input field on our course website.

Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.
Let's revisit Example 38 and let Sage do the work for us:
>>> A = matrix([[1,2,1,4],[2,4,0,2],[3,6,0,3]11)

>>> A.rref ()

S O
S O N
o = O
S W

Similarly, if we wanted to compute a basis for null(AT), we can simply do:

>>> A.transpose().rref ()

oo o =
oo =~ ©
o oNlwo

Here are some other standard things we might be interested in (compare with Example 17):
>>> A = matrix([[4,0,2],[2,2,2],[1,0,3]])
>>> A.eigenvalues()
[5,2, 2]

>>> A.eigenvectors_right ()

[(5,[(1, 1, ;)},1)(2, (1,0, —1),(0, 1, 0)],2)

>>> A.eigenmatrix_right()
e

10
1 01
1
L
{2 OJ

o O Ut
o N O
N OO

>>> A.rank()
3

>>> A.determinant ()
20

>>> A.inverse()

3 1

0 Y73

R

100 3
Armin Straub 20

straub@southalabama.edu


sagemath.org
cocalc.com

| Application: least squares lines

Given data points (x;, y;), we wish to find optimal parameters a, b such that y; ~a + bz; for all 4.

Example 48. Determine the line that “best fits” the data points (2, 1), (5,2),(7,3), (8, 3).
Comment. Can you see that there is no line fitting the data perfectly? (Check out the last two points!)

Solution. We need to determine the values a, b for the best-fitting line y=a + bx.
If there was a line that fit the data perfectly, then:

a+2b=1  (2,1)
a+5b=2 (5,2)
a+7b=3 (7,3)
a+8b=3 (8,3)
In matrix form, this is: 1 i; ] [ e }: { g; ] (writing the points as (x4, y;))
Ll L
1 x4 Ya
design matrix X observation

vector y

1 2]
Using our points, these equations become [ 1 ? J
1

1
[ ‘Z }_[ 3 J [This system is inconsistent (as expected).]
3

We compute a least squares solution.

1111{15-| 4 22 1111(;—| 9
XTX:[2578”1 7J:{22 142}’ XTy:[2578][3J:[57}
1 8 3
Solving the normal equations [ 242 12422 H Z } :{ 597 ] we find [ Z } :{ 52/174 }

. 2 5
Hence, the least squares line is y = = + i

The plot above shows our points together with this line. It does look like a very good fit!

Important comment. In what sense is this the line of “best fit"? By computing a least squares solution the way
we do, we are minimizing the error y — X{ Z } The components of that error are y; — (a + bx;).

Hence, we see that we are minimizing the residual sum of squares SS;es =3, [y — (a + bx;)]>.

Also see the discussion after the next example (where we swap the role of = and y) as well as the example at
the beginning of next class (where we discuss making predictions and why minimizing SS,.s corresponds to
minimizing the error of those predictions).
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