

Consistency of a system of equations

Example 40. (warmup) $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$

Note that this means that the system of equations $\begin{array}{l} x_1 + 2x_2 = 1 \\ 3x_1 + x_2 = 1 \\ 5x_2 = 1 \end{array}$ can also be written as $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

[This was the motivation for introducing matrix-vector multiplication.]

In the same way, any system can be written as $A\mathbf{x} = \mathbf{b}$, where A is a matrix and \mathbf{b} a vector.

In particular, this makes it obvious that:

$$A\mathbf{x} = \mathbf{b} \text{ is consistent} \iff \mathbf{b} \text{ is in } \text{col}(A)$$

Recall that, by the FTLA, $\text{col}(A)$ and $\text{null}(A^T)$ are orthogonal complements.

Theorem 41. $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b}$ is orthogonal to $\text{null}(A^T)$

Proof. $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b}$ is in $\text{col}(A) \stackrel{\text{FTLA}}{\iff} \mathbf{b}$ is orthogonal to $\text{null}(A^T)$

Note. \mathbf{b} is orthogonal to $\text{null}(A^T)$ means that $\mathbf{y}^T \mathbf{b} = 0$ whenever $\mathbf{y}^T A = \mathbf{0}$. Why?!

Example 42. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which \mathbf{b} does $A\mathbf{x} = \mathbf{b}$ have a solution?

Solution. (old)

$$\left[\begin{array}{cc|c} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{array} \right] \xrightarrow{R_2 - 3R_1 \Rightarrow R_2} \left[\begin{array}{cc|c} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 5 & b_3 \end{array} \right] \xrightarrow{R_3 + R_2 \Rightarrow R_3} \left[\begin{array}{cc|c} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{array} \right]$$

So, $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $-3b_1 + b_2 + b_3 = 0$.

Solution. (new) We determine a basis for $\text{null}(A^T)$:

$$\left[\begin{array}{ccc} 1 & 3 & 0 \\ 2 & 1 & 5 \end{array} \right] \xrightarrow{R_2 - 2R_1 \Rightarrow R_2} \left[\begin{array}{ccc} 1 & 3 & 0 \\ 0 & -5 & 5 \end{array} \right] \xrightarrow{-\frac{1}{5}R_2 \Rightarrow R_2} \left[\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 1 & -1 \end{array} \right] \xrightarrow{R_1 - 3R_2 \Rightarrow R_1} \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & -1 \end{array} \right]$$

We read off from the RREF that $\text{null}(A^T)$ has basis $\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$.

\mathbf{b} has to be orthogonal to $\text{null}(A^T)$. That is, $\mathbf{b} \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} = 0$. As above!

Comment. Below is how we can use Sage to (try and) solve $Ax = b$ for $b = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

```
>>> A = matrix([[1,2],[3,1],[0,5]])
>>> A.solve_right(vector([1,1,2]))
(1/5, 2/5)

>>> A.solve_right(vector([1,1,1]))
ValueError: matrix equation has no solutions

During handling of the above exception, another exception occurred:

ValueError: matrix equation has no solutions
```