

Example 23. (review) If $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, then its **transpose** is $A^T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

Recall that $(AB)^T = B^T A^T$. This reflects the fact that, in the column-centric versus the row-centric interpretation of matrix multiplication, the order of the matrices is reversed.

Comment. When working with complex numbers, the fundamental role is not played by the transpose but by the **conjugate transpose** instead (we'll see that in our discussion of orthogonality): $A^* = \overline{A^T}$.

For instance, if $A = \begin{bmatrix} 1-3i & 5i \\ 2+i & 3 \end{bmatrix}$, then $A^* = \begin{bmatrix} 1+3i & 2-i \\ -5i & 3 \end{bmatrix}$.

Orthogonality

The inner product and distances

Definition 24. The **inner product** (or **dot product**) of \mathbf{v} , \mathbf{w} in \mathbb{R}^n :

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 + \dots + v_n w_n.$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.

In addition: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$.

Example 25. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = 2 - 2 + 12 = 12$

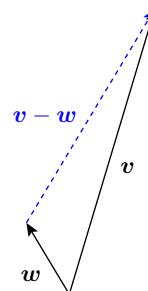
Definition 26.

- The **norm** (or **length**) of a vector \mathbf{v} in \mathbb{R}^n is

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

- The **distance** between points \mathbf{v} and \mathbf{w} in \mathbb{R}^n is

$$\text{dist}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|.$$



Example 27. For instance, in \mathbb{R}^2 , $\text{dist}\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = \left\| \begin{bmatrix} x_1 - x_2 \\ y_1 - y_2 \end{bmatrix} \right\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Example 28. Write $\|\mathbf{v} - \mathbf{w}\|^2$ as a dot product, and multiply it out.

Solution. $\|\mathbf{v} - \mathbf{w}\|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \|\mathbf{v}\|^2 - 2\mathbf{v} \cdot \mathbf{w} + \|\mathbf{w}\|^2$

Comment. This is a vector version of $(x - y)^2 = x^2 - 2xy + y^2$.

The reason we were careful and first wrote $-\mathbf{v} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v}$ before simplifying it to $-2\mathbf{v} \cdot \mathbf{w}$ is that we should not take rules such as $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$ for granted. For instance, for the cross product $\mathbf{v} \times \mathbf{w}$, that you may have seen in Calculus, we have $\mathbf{v} \times \mathbf{w} \neq \mathbf{w} \times \mathbf{v}$ (instead, $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$).

Orthogonal vectors

Definition 29. v and w in \mathbb{R}^n are **orthogonal** if

$$v \cdot w = 0.$$

Why? How is this related to our understanding of right angles?

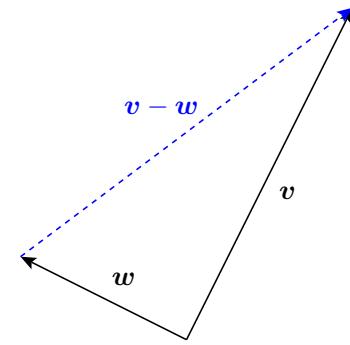
Pythagoras!

v and w are orthogonal

$$\iff \|v\|^2 + \|w\|^2 = \underbrace{\|v - w\|^2}_{=\|v\|^2 - 2v \cdot w + \|w\|^2} \quad (\text{by previous example})$$

$$\iff -2v \cdot w = 0$$

$$\iff v \cdot w = 0$$



Definition 30. We say that two subspaces V and W of \mathbb{R}^n are **orthogonal** if and only if every vector in V is orthogonal to every vector in W .

The **orthogonal complement** of V is the space V^\perp of all vectors that are orthogonal to V .

Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our discussion in the next example which leads to Theorem 32. Namely, every space V can be written as $V = \text{col}(A)$ for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V). It then follows that $V^\perp = \text{null}(A^T)$ (which is clearly a space).

Example 31. Determine a basis for the orthogonal complement of $V = \text{span}\left\{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}\right\}$.

Solution. The orthogonal complement V^\perp consists of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ that are orthogonal to $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.

Using the dot product, this means we must have $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$ as well as $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$.

Note that this is equivalent to the equations $1x_1 + 2x_2 + 1x_3 = 0$ and $3x_1 + 1x_2 + 2x_3 = 0$.

In matrix-vector form, these two equations combine to $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

This is the same as saying that $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ has to be in $\text{null}\left(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}\right)$. This means that $V^\perp = \text{null}\left(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}\right)$.

[Note that we have done no computations up to this point! Instead, we have derived Theorem 32 below.]

We compute (fill in the work!) that $V^\perp = \text{null}\left(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}\right) \xrightarrow{\text{RREF}} \text{null}\left(\begin{bmatrix} 1 & 0 & 3/5 \\ 0 & 1 & 1/5 \end{bmatrix}\right) = \text{span}\left\{\begin{bmatrix} -3/5 \\ -1/5 \\ 1 \end{bmatrix}\right\}$.

Check. $\begin{bmatrix} -3/5 \\ -1/5 \\ 1 \end{bmatrix}$ is indeed orthogonal to both $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.

Note. If $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is orthogonal to both basis vectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, then it is orthogonal to every vector in V .

Indeed, vectors in V are of the form $v = a\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ and we have $v \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = a\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$.

Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?

The following theorem follows by the same reasoning that we used in the previous example.

In that example, we started with $V = \text{col}\left(\begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}\right)$ and found that $V^\perp = \text{null}\left(\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}\right)$.

Theorem 32. If $V = \text{col}(A)$, then $V^\perp = \text{null}(A^T)$.

In particular, if V is a subspace of \mathbb{R}^n with $\dim(V) = r$, then $\dim(V^\perp) = n - r$.

For short. $\text{col}(A)^\perp = \text{null}(A^T)$

Note that the second part can be written as $\dim(V) + \dim(V^\perp) = n$.

To see that this is true, suppose we choose the columns of A to be a basis of V . If V is a subspace of \mathbb{R}^n with $\dim(V) = r$, then A is a $r \times n$ matrix with r pivot columns. Correspondingly, A^T is a $n \times r$ matrix with r pivot rows. Since $n \geq r$ there are $n - r$ free variables when computing a basis for $\text{null}(A^T)$. Hence, $\dim(V^\perp) = n - r$.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in \mathbb{R}^5 . Determine the dimension of V and its orthogonal complement V^\perp .

Solution. This means that $\dim V = 3$. By Theorem 32, we have $\dim V^\perp = 5 - 3 = 2$.

Example 34. Determine a basis for the orthogonal complement of (the span of) $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

Solution. Here, $V = \text{span}\left\{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}\right\}$ and we are looking for the orthogonal complement V^\perp .

Since $V = \text{col}\left(\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}\right)$, it follows from Theorem 32 that $V^\perp = \text{null}([1 \ 2 \ 1])$.

Computing a basis for $\text{null}([1 \ 2 \ 1])$ is easy since $[1 \ 2 \ 1]$ is already in RREF.

Note that the general solution to $[1 \ 2 \ 1]x = 0$ is $\begin{bmatrix} -2s - t \\ s \\ t \end{bmatrix} = s\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

A basis for $V^\perp = \text{null}([1 \ 2 \ 1])$ therefore is $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.