

Review: Eigenvalues and eigenvectors

If $A\mathbf{x} = \lambda\mathbf{x}$ (and $\mathbf{x} \neq \mathbf{0}$), then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ (just a number).

Note that for the equation $A\mathbf{x} = \lambda\mathbf{x}$ to make sense, A needs to be a square matrix (i.e. $n \times n$).

Key observation:

$$\begin{aligned} A\mathbf{x} &= \lambda\mathbf{x} \\ \iff A\mathbf{x} - \lambda\mathbf{x} &= \mathbf{0} \\ \iff (A - \lambda I)\mathbf{x} &= \mathbf{0} \end{aligned}$$

This homogeneous system has a nontrivial solution \mathbf{x} if and only if $\det(A - \lambda I) = 0$.

To find eigenvectors and eigenvalues of A :

(a) First, find the eigenvalues λ by solving $\det(A - \lambda I) = 0$.

$\det(A - \lambda I)$ is a polynomial in λ , called the **characteristic polynomial** of A .

(b) Then, for each eigenvalue λ , find corresponding eigenvectors by solving $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

More precisely, we find a basis of eigenvectors for the λ -eigenspace $\text{null}(A - \lambda I)$.

Example 16. $A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix}$ has one eigenvector that is “easy” to see. Do you see it?

Solution. Note that $A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Hence, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is a 2-eigenvector.

Just for contrast. Note that $A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \neq \lambda \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Hence, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is not an eigenvector.

Suppose that A is $n \times n$ and has independent eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$.

Then A can be **diagonalized** as $A = PDP^{-1}$, where

- the columns of P are the eigenvectors, and
- the diagonal matrix D has the eigenvalues on the diagonal.

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.

Comment. If you don't quite recall why these choices result in the diagonalization $A = PDP^{-1}$, note that the diagonalization is equivalent to $AP = PD$.

- Put the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ as columns into a matrix P .

$$\begin{aligned} A\mathbf{x}_i &= \lambda_i\mathbf{x}_i \implies A \begin{bmatrix} | & | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \lambda_1\mathbf{x}_1 & \cdots & \lambda_n\mathbf{x}_n \\ | & | & | \end{bmatrix} \\ &= \begin{bmatrix} | & | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \end{aligned}$$

- In summary: $AP = PD$

Example 17. Let $A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix}$.

- (a) Find the eigenvalues and bases for the eigenspaces of A .
- (b) Diagonalize A . That is, determine matrices P and D such that $A = PDP^{-1}$.

Solution.

- (a) By expanding by the second column, we find that the characteristic polynomial $\det(A - \lambda I)$ is

$$\begin{vmatrix} 4-\lambda & 0 & 2 \\ 2 & 2-\lambda & 2 \\ 1 & 0 & 3-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 4-\lambda & 2 \\ 1 & 3-\lambda \end{vmatrix} = (2-\lambda)[(4-\lambda)(3-\lambda) - 2] = (2-\lambda)^2(5-\lambda).$$

Hence, the eigenvalues are $\lambda = 2$ (with multiplicity 2) and $\lambda = 5$.

Comment. At this point, we know that we will find one eigenvector for $\lambda = 5$ (more precisely, the 5-eigenspace definitely has dimension 1). On the other hand, the 2-eigenspace might have dimension 2 or 1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

- The 5-eigenspace is $\text{null}\left(\begin{bmatrix} -1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2 \end{bmatrix}\right)$. Proceeding as in Example 14, we obtain

$$\text{null}\left(\begin{bmatrix} -1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2 \end{bmatrix}\right) \xrightarrow{\text{RREF}} \text{null}\left(\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}\right) = \text{span}\left\{\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}\right\}.$$

In other words, the 5-eigenspace has basis $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$.

- The 2-eigenspace is $\text{null}\left(\begin{bmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}\right)$. Proceeding as in Example 15, we obtain

$$\text{null}\left(\begin{bmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}\right) \xrightarrow{\text{RREF}} \text{null}\left(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right) = \text{span}\left\{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\right\}$$

In other words, the 2-eigenspace has basis $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

Comment. So, indeed, the 2-eigenspace has dimension 2. In particular, A is diagonalizable.

- (b) A possible choice is $P = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Comment. However, many other choices are possible and correct. For instance, the order of the eigenvalues in D doesn't matter (as long as the same order is used for P). Also, for P , the columns can be chosen to be any other set of eigenvectors.