

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 30 points in total. You need to show work to receive full credit. **Good luck!**

Problem 1. (8 points) Solve the initial value problem $\mathbf{y}' = \begin{bmatrix} 1 & -1 \\ -2 & 0 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$

Problem 3. (8 points) Fill in the blanks.

(a) Let A be the 3×3 matrix for reflecting through a plane (containing the origin).

• A 9×9 matrix with eigenvalues 1, 2, 2, 2, 4, 4, 4, 4?

Problem 4. (2 points) Convert the third-order differential equation

$$y''' = 3y'' + 8y, \quad y(0) = 2, \quad y'(0) = 1, \quad y''(0) = -1$$

to a system of first-order differential equations.

Problem 5.	(1+4+1)	points)	Consider	the sequence	a_n defined	by a_{n+2} =	$=2a_{n+1}+$	$-3a_n$ and	$a_0 = 0,$	$a_1 = 8.$
------------	---------	---------	----------	--------------	---------------	----------------	--------------	-------------	------------	------------

(a) The next two terms are $a_2 =$	and $a_3 =$		
(b) A Binet-like formula for a_n is $a_n =$, and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} =$	

Problem 6. (2 points) Let A be the 3×3 matrix for reflecting through the plane spanned by the vectors $\begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$, $\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$. Determine an orthogonal matrix P and a diagonal matrix D such that $A = PDP^T$.

(extra scratch paper)