Problem 1. (8 points) Solve the initial value problem $\quad \boldsymbol{y}^{\prime}=\left[\begin{array}{cc}1 & -1 \\ -2 & 0\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}0 \\ 3\end{array}\right]$.

Problem 2. (4 points) Suppose the internet consists of only the three webpages A, B, A C which link to each other as indicated in the diagram.
Rank these webpages by computing their PageRank vector.

\square
Problem 3. (8 points) Fill in the blanks.
(a) Let A be the 3×3 matrix for reflecting through a plane (containing the origin).

Then $\operatorname{det}(A)=\square$, and the eigenvalues (indicate if repeated) of A are

(b) If A is a reflection matrix, then $A^{2024}=\square$. If B is a projection matrix, then $B^{2024}=\square$
(c) If A has eigenvalue 3 , then A^{2} has eigenvalue
 $3 A$ eigenvalue \square, and A^{T} eigenvalue \square
(d) If $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$, then $A^{n}=\square$ and $e^{A t}=\square$
(e) An example of a 2×2 matrix with eigenvalue $\lambda=3$ that is not diagonalizable is
(f) If $N^{3}=\mathbf{0}$, then $e^{N t}=\square$
(g) How many different Jordan normal forms are there in the following cases?

- A 5×5 matrix with eigenvalues $3,3,5,5,5$? \square
- A 9×9 matrix with eigenvalues $1,2,2,2,4,4,4,4$? \square

Problem 4. (2 points) Convert the third-order differential equation

$$
y^{\prime \prime \prime}=3 y^{\prime \prime}+8 y, \quad y(0)=2, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=-1
$$

to a system of first-order differential equations.
\square
Problem 5. ($1+\mathbf{4}+\mathbf{1}$ points) Consider the sequence a_{n} defined by $a_{n+2}=2 a_{n+1}+3 a_{n}$ and $a_{0}=0, a_{1}=8$.
(a) The next two terms are $a_{2}=\square$ and $a_{3}=\square$.
(b) A Binet-like formula for a_{n} is $a_{n}=\square$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\square$.

Problem 6. (2 points) Let A be the 3×3 matrix for reflecting through the plane spanned by the vectors $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Determine an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$.
(extra scratch paper)

