No notes, calculators or tools of any kind are permitted. There are 31 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (6 points)
(a) Find the least squares solution to $\left[\begin{array}{cc}1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}-2 \\ 0 \\ 5 \\ 2\end{array}\right]$.
(b) Determine the least squares line for the data points $(2,-2),(1,0),(1,5),(-1,2)$.

Problem 2. (2 points) Suppose A is a symmetric 2×2 matrix with 3 -eigenvector $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\operatorname{det}(A)=6$.

Then A has
 Further, $A=P D P^{T}$ with $D=$

Problem 3. (9 points)

(a) Using Gram-Schmidt, obtain an orthonormal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]\right\}$.
(b) Determine the orthogonal projection of $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ onto W.
(c) Determine the orthogonal projection of that same vector onto W^{\perp}.
(d) Determine the $Q R$ decomposition of the matrix $\left[\begin{array}{cc}1 & 3 \\ 1 & 1 \\ 0 & -1\end{array}\right]$.

Problem 4. (3 points) We want to find values for the parameters a, b, c such that $z=a x+b x^{2}+c \ln (y)$ best fits some given points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Problem 5. (3 points) Let $A=\left[\begin{array}{ccccc}1 & 5 & -2 & 0 & -4 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$.
(a) A basis for $\operatorname{null}(A)$ is \square

(b) $\operatorname{dim} \operatorname{col}(A)=\square, \quad \operatorname{dim} \operatorname{row}(A)=\square$, $\operatorname{dim} \operatorname{null}(A)=\square, \quad \operatorname{dim} \operatorname{null}\left(A^{T}\right)=\square$

Problem 6. (8 points) Fill in the blanks.
(a) $\operatorname{null}(A)$ is the orthogonal complement of $\square \operatorname{col}(A)$ is the orthogonal complement of \square
(b) If A is a 5×7 matrix with $\operatorname{rank} 4$, then $\operatorname{dim} \operatorname{col}(A)=\square$ and $\operatorname{dim} \operatorname{null}(A)=\square$.
(c) By definition, a matrix Q is orthogonal if and only if
(d) If Q is orthogonal, then $\operatorname{det}(Q)$ is \square
(e) The linear system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is orthogonal to

(f) For which matrices A is it true that $A^{-1}=A^{T}$?
(g) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is $P=$

If A has orthonormal columns, this simplifies to \square.
(h) Let W be the subspace of \mathbb{R}^{5} of all solutions to $x_{1}-x_{3}+2 x_{5}=0$.

(extra scratch paper)

