
Sketch of Lecture 1 Mon, 1/8/2024

Review: Matrix calculus

Example 1. Matrix multiplication is not commutative!

�
�
1 2
3 4

�
�
�
1 2
0 1

�
=
�
1 4
3 10

�
Multiplication (on the right) with that �almost identity matrix� is performing the column operation
C2+2C1)C2 (i.e. 2 times the first column is added to the second column).

�
�
1 2
0 1

�
�
�
1 2
3 4

�
=
�
7 10
3 4

�
Multiplication (on the left) with the same matrix is performing the row operation R1+2R2)R1.
First comment. This indicates a second interpretation of matrix multiplication: instead of taking linear
combinations of columns of the first matrix, we can also take linear combinations of rows of the second
matrix.
Second comment. The row operations we are doing during Gaussian elimination can be realized by
multiplying (on the left) with �almost identity matrices�.

Example 2. [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.
If you know about the dot product, do you see a connection with the first case?

Example 3. Suppose A is m � n and B is p � q. When does AB make sense? In that case,
what are the dimensions of AB?
AB makes sense if n= p. In that case, AB is a m� q matrix.

Example 4.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=
�

1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=
�
3 1
2 1

�
.

Example 5. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

In particular:

det(A)= 0 () A is not invertible
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Similarly, for n�n matrices A:

A is invertible (i.e. there is a matrix A¡1 such that AA¡1= I)
() det(A)=/ 0
() Ax= b has a unique solution (namely, x=A¡1b)

Comment. Why is it not common to write 1

A
instead of A¡1?

The notation 1

A
easily leads to ambiguities: for instance, should B

A
mean BA¡1 or should it mean A¡1B?

[Of course, one could try to avoid this by notations like B/A which would more clearly mean BA¡1. It's just
not common and doesn't have any real advantages.]

Example 6.24 1 2 3
4 5 6
7 8 9

3524 1 0 0
¡4 1 0
0 0 1

35=
24 ¡7 2 3
¡16 5 6
¡25 8 9

35
Multiplication (on the right) with that �almost identity matrix� is performing the column operation C1¡ 4C2)
C1 (i.e. ¡4 times the second column is added to the first column).24 1 0 0
¡4 1 0
0 0 1

3524 1 2 3
4 5 6
7 8 9

35=
24 1 2 3
0 ¡3 ¡6
7 8 9

35
Multiplication (on the left) with the same matrix is performing the row operation R2¡ 4R1)R2.
Comment (again). The row operations we are doing during Gaussian elimination can all be realized by multi-
plying (on the left) with �almost identity matrices�.

These matrices are called elementary matrices (they are obtained by performing a single ele-
mentary row operation on an identity matrix).

Elementary matrices are invertible because elementary row operations are reversible:24 1 0 0
2 1 0
0 0 1

35¡1=
24 1 0 0
¡2 1 0
0 0 1

35;
24 1 0 0
0 2 0
0 0 1

35¡1=
2664 1

1

2

1

3775;
24 0 1 0
1 0 0
0 0 1

35¡1=
24 0 1 0
1 0 0
0 0 1

35
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Sketch of Lecture 2 Wed, 1/10/2024

Example 7. Let us do Gaussian elimination on A=
�
2 1
4 ¡6

�
until we have an echelon form:

A=

�
2 1
4 ¡6

�
 R2¡2R1)R2

�
2 1
0 ¡8

�
As last class, the row operation can be encoded by multiplication with an �almost identity matrix� E:�

1 0
¡2 1

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

E

�
2 1
4 ¡6

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

A

=

�
2 1
0 ¡8

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

U

Since
�

1 0
¡2 1

�¡1
=
�
1 0
2 1

�
(no calculation needed; this is the row operation R2+2R1)R2 which reverses our

above operation), this means that

A=E¡1U =

�
1 0
2 1

��
2 1
0 ¡8

�
:

We factored A as the product of a lower and an upper triangular matrix!

A=LU is known as the LU decomposition of A.

L is lower triangular, U is upper triangular.

If A is m�n, then L is an invertible lower triangular m�m matrix, and U is a usual echelon form of A.
Every matrix A has a LU decomposition (after possibly swapping some rows of A first).

� The matrix U is just the echelon form of A produced during Gaussian elimination.

� The matrix L can be constructed, entry-by-entry, by simply recording the row operations
used during Gaussian elimination. (No extra work needed!)

Example 8. Determine the LU decomposition of A=
�
1 2
3 4

�
.

Solution. A=
�
1 2
3 4

�
 R2¡3R1)R2

�
1 2
0 ¡2

�
translates into

�
1 0
¡3 1

��
1 2
3 4

�
=
�
1 2
0 ¡2

�
.

Since
�

1 0
¡3 1

�¡1
=
�
1 0
3 1

�
(no calculation needed!), we therefore have A=

�
1 0
3 1

��
1 2
0 ¡2

�
.

Example 9. Determine the LU decomposition of A=

24 1 1 2 1
3 2 7 2

¡2 6 ¡3 1

35.
Solution. We perform Gaussian elimination until we arrive at an echelon form:24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35
Observe that we can reverse both of these steps using the row operations R2+3R1)R2

R3¡ 2R1¡ 8R2)R3
.

Encoding these in L, the corresponding LU decomposition of A is

A=LU =

24 1
3 1
¡2 ¡8 1

3524 1 1 2 1
¡1 1 ¡1

9 ¡5

35:
Note that no further computation was required to obtain L. (The entries in the matrix L are precisely the
(negative) coefficients in the original row operations.)
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Comment. By contrast, combining the operations R2¡ 3R1)R2
R3+2R1)R3

and R3+8R2)R3 requires computation.

That is because we changeR2 in the first step, and then use the changedR2 in the second step. Indeed, note that24 1
0 1
0 8 1

3524 1
¡3 1
2 0 1

35=
24 1
¡3 1
¡22 8 1

35;
so the combined operations are R2¡ 3R1)R2

R3¡ 22R1+8R2)R3
(you can also see that directly from the operations).

On the other hand, there was no such complication when combining the reversed operations:

Combining R3¡ 8R2)R3 and
R2+3R1)R2
R3¡ 2R1)R3

simply results in R2+3R1)R2
R3¡ 2R1¡ 8R2)R3

, as used above.

The difference is that, here, we change R3 in the first step but then don't use the changed R3 in the second
step. In terms of matrix multiplication, we have24 1

3 1
¡2 0 1

3524 1
0 1
0 ¡8 1

35=
24 1

3 1
¡2 ¡8 1

35;
where, because of their special form, the product of the two lower triangular matrices is just �putting together�
the entries (unlike in the non-reversed product).

Review. The RREF (row-reduced echelon form) of A is obtained from an echelon form by

� scaling the pivots to 1, and then

� eliminating the entries above the pivots.

A typical RREF has the shape [� represents an entry that could be anything]24 1 � 0 � � 0 �
1 � � 0 �

1 �

35
Example 10. Let's compute the RREF of the 3� 4 matrix from Example 9.
Solution. 24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35

 
¡R2)R2
1
9
R3)R3

2664 1 1 2 1
0 1 ¡1 1

0 0 1 ¡5

9

3775  
R1¡2R3)R1

R2+R3)R2

26666664
1 1 0

19
9

0 1 0
4

9

0 0 1 ¡5

9

37777775  R1¡R2)R1

26666664
1 0 0

5

3

0 1 0
4

9

0 0 1 ¡5

9

37777775
Example 11. The RREF of A=

�
2 1
4 ¡6

�
from earlier is the 2� 2 identity matrix.

Comment. That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If
that isn't obvious to you, think about how you invert a matrix using Gaussian elimination (reviewed next).
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Sketch of Lecture 3 Fri, 1/12/2024

Review. Recall the Gauss�Jordan method of computing A¡1. Starting with the augmented matrix
[A j I], we do Gaussian elimination until we obtain the RREF, which will be of the form [I j A¡1]
so that we can read off A¡1.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication
(on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF of
an invertible matrix is I, we have BA= I, which means that we must have B = A¡1. The other part of the
augmented matrix (which is I initially) gets multiplied with B=A¡1 as well, so that, in the end, it is B I=A¡1.
That's why we can read off A¡1!

For instance. To invert
�
2 1
4 ¡6

�
using the Gauss�Jordan method, we would proceed as follows:

�
2 1 1 0
4 ¡6 0 1

�
 R2¡2R1)R2

�
2 1 1 0
0 ¡8 ¡2 1

�
 

1
2
R1)R1

¡1
8
R2)R2

24 1
1

2

1

2
0

0 1
1

4
¡1

8

35  R1¡ 1
2
R2)R1

24 1 0
3

8

1

16

0 1
1

4
¡1

8

35
We conclude that

�
2 1
4 ¡6

�¡1
=

24 3
8

1
16

1
4
¡1
8

35.
Of course, for 2� 2 matrices it is much simpler to use the formula

�
a b
c d

�¡1
=

1

ad¡ bc

�
d ¡b
¡c a

�
.

Review: Vector spaces, bases, dimension, null spaces

Review.

� Vectors are things that can be added and scaled.

� Hence, given vectors v1; :::;vn, the most general we can do is form the linear combination
�1v1 + ::: + �nvn. The set of all these linear combinations is the span of v1; :::; vn,
denoted by spanfv1; :::;vng.

� Vector spaces are spans.

Equivalently. Vector spaces are sets of vectors so that the result of adding and scaling remains within
that set.
Homework. Of course, the latter is a very informal statement. Revisit the formal definition, probably
consisting of a list of axioms, and observe how that matches with the above (for instance, several of
the axioms are concerned with addition and scaling satisfying the �expected� rules).

� Recall that vectors from a vector space V form a basis of V if and only if

� the vectors span V , and

� the vectors are (linearly) independent.

Equivalently. v1; :::;vn from V form a basis of V if and only if every vector in V can be expressed as
a unique linear combination of v1; :::;vn.
Just checking. Make sure that you can define precisely what it means for vectors v1; :::; vn to be
independent.

� The dimension of a vector space V is the number of vectors in a basis for V .

No matter what basis one chooses for V , it always has the same number of vectors.
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Example 12. R3 is the vector space of all vectors with 3 real entries.

R itself refers to the set of real numbers. We will later also discuss C, the set of complex numbers.

The standard basis of R3 is

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35. The dimension of R3 is 3.

Review. The null space null(A) of a matrix A consists of those vectors x such that Ax=0.
Make sure that you see why null(A) is a vector space. [For instance, if you pick two vectors in null(A) why is
it that the sum of them is in null(A) again?]

Example 13. What is null(A) if the matrix A is invertible?

Solution. If A is invertible, then Ax=0 has the unique solution x=A¡10=0.
Hence, null(A)= f0g which is the trivial vector space (consisting of only the null vector) and has dimension 0.

Example 14. Compute a basis for null(A) where A=
24 ¡1 0 2

2 ¡3 2
1 0 ¡2

35.
Solution. We perform row operations and obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =

R2+2R1)R2
R3+R1)R3

null

0@24 ¡1 0 2
0 ¡3 6
0 0 0

351A =

¡R1)R1

¡1
3
R2)R2

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A:
From the RREF, we can now read off the general solution to Ax=0:

� x1 and x2 are pivot variables. [For each we have an equation expressing it in terms of the other variables;
for instance, x1¡ 2x3=0 tells us that x1=2x3.]

� x3 is a free variable. [There is no equation forcing a value on x3.]

� Hence, without computation, we see that the general solution is

24 2x3
2x3
x3

35.
In other words, a basis is

24 2
2
1

35.
Comment. We are starting with the three equations ¡x1 + 2x3 = 0, 2x1 ¡ 3x2 + 2x3 = 0, x1 ¡ 2x3 = 0.
Performing row operations on the matrix is the same as combining these equations (with the objective to form
simpler equations by eliminating variables).

Example 15. Compute a basis for null

0@24 2 0 2
2 0 2
1 0 1

351A.
Solution.

null

0@24 2 0 2
2 0 2
1 0 1

351A =

R2¡R1)R2

R3¡ 1
2
R1)R3

null

0@24 2 0 2
0 0 0
0 0 0

351A =
1
2
R1)R1

null

0@24 1 0 1
0 0 0
0 0 0

351A

This time, x2 and x3 are free variables. The general solution is

24 ¡x3x2
x3

35=x2

24 0
1
0

35+ x3

24 ¡10
1

35.
Hence, a basis is

24 0
1
0

35;
24 ¡10

1

35.
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Sketch of Lecture 4 Wed, 1/17/2024

Review: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.
More precisely, we find a basis of eigenvectors for the �-eigenspace null(A¡�I).

Example 16. A=

24 4 0 2
2 2 2
1 0 3

35 has one eigenvector that is �easy� to see. Do you see it?

Solution. Note that A

24 0
1
0

35=
24 0
2
0

35=2

24 0
1
0

35. Hence,
24 0
1
0

35 is a 2-eigenvector.

Just for contrast. Note that A

24 0
0
1

35=
24 2
2
3

35=/ �
24 0
0
1

35. Hence,
24 0
0
1

35 is not an eigenvector.

Suppose that A is n�n and has independent eigenvectors x1; :::;xn.

Then A can be diagonalized as A=PDP¡1, where

� the columns of P are the eigenvectors, and

� the diagonal matrix D has the eigenvalues on the diagonal.

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.
Comment. If you don't quite recall why these choices result in the diagonalization A=PDP¡1, note that the
diagonalization is equivalent to AP =PD.

� Put the eigenvectors x1; :::;xn as columns into a matrix P .

Axi=�ixi =) A

24 j j
x1 ��� xn
j j

35 =

24 j j
�1x1 ��� �nxn
j j

35

=

24 j j
x1 ��� xn
j j

35
2664 �1

���
�n

3775
� In summary: AP =PD
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Example 17. Let A=

24 4 0 2
2 2 2
1 0 3

35.
(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) Diagonalize A. That is, determine matrices P and D such that A=PDP¡1.

Solution.

(a) By expanding by the second column, we find that the characteristic polynomial det(A¡�I) is��������������
4¡� 0 2

2 2¡� 2
1 0 3¡�

��������������=(2¡�)
�������� 4¡� 2

1 3¡�

��������=(2¡�)[(4¡�)(3¡�)¡ 2]= (2¡�)2(5¡�):

Hence, the eigenvalues are �=2 (with multiplicity 2) and �=5.
Comment. At this point, we know that we will find one eigenvector for � = 5 (more precisely, the 5-
eigenspace definitely has dimension 1). On the other hand, the 2-eigenspace might have dimension 2 or
1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

� The 5-eigenspace is null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A. Proceeding as in Example 14, we obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =
RREF

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A= span

8<:
24 2
2
1

359=;:

In other words, the 5-eigenspace has basis

24 2
2
1

35.
� The 2-eigenspace is null

0@24 2 0 2
2 0 2
1 0 1

351A. Proceeding as in Example 15, we obtain

null

0@24 2 0 2
2 0 2
1 0 1

351A =
RREF

null

0@24 1 0 1
0 0 0
0 0 0

351A= span

8<:
24 0
1
0

35;
24 ¡10

1

359=;
In other words, the 2-eigenspace has basis

24 0
1
0

35;
24 ¡10

1

35.
Comment. So, indeed, the 2-eigenspace has dimension 2. In particular, A is diagonalizable.

(b) A possible choice is P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
Comment. However, many other choices are possible and correct. For instance, the order of the eigen-
values in D doesn't matter (as long as the same order is used for P ). Also, for P , the columns can be
chosen to be any other set of eigenvectors.
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Sketch of Lecture 5 Fri, 1/19/2024

Example 18. (extra practice) Diagonalize, if possible, the matrices

A=

24 3 4 1
0 2 0
1 4 3

35, B=

24 0 0 1
0 0 0
0 0 0

35, C =

24 1 0 1
0 0 0
0 0 0

35:

Solution. For instance, A=PDP¡1 with P =

24 1 ¡4 ¡1
0 1 0
1 0 1

35 and D=

24 4
2
2

35. B is not diagonalizable.

For instance, C =PDP¡1 with P =

24 1 0 ¡1
0 1 0
0 0 1

35 and D=

24 1
0
0

35.

Review: Computing determinants using cofactor expansion

Review. Let A be an n�n matrix. The determinant of A, written as det(A) or jAj, is a number
with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x (for all b)
() Ax=0 is only solved by x=0

Example 19.
�������� a b
c d

��������= ad¡ bc

Example 20. Compute

��������������
1 2 0
3 ¡1 2
2 0 1

�������������� by cofactor expansion.
Solution. We expand by the first row:
��������������
1 2 0
3 ¡1 2
2 0 1

��������������=1 �

��������������
+
¡1 2
0 1

��������������¡ 2 �
��������������

¡
3 2
2 1

��������������+0 �

��������������
+

3 ¡1
2 0

��������������
=
i.e.

1 �
�������� ¡1 2
0 1

��������¡ 2 � �������� 3 2
2 1

��������+0 �
�������� 3 ¡1
2 0

��������=1 � (¡1)¡ 2 � (¡1)+0=1

Each term in the cofactor expansion is �1 times an entry times a smaller determinant (row and
column of entry deleted).

The �1 is assigned to each entry according to

266664
+ ¡ + ���
¡ + ¡
+ ¡ +
��� ���

377775.
Solution. We expand by the second column:
��������������
1 2 0
3 ¡1 2
2 0 1

��������������=¡2 �
��������������

¡
3 2
2 1

��������������+(¡1) �

��������������
1 0
+

2 1

��������������¡ 0 �
��������������
1 0
3 2
¡

��������������
= ¡ 2 � (¡1)+ (¡1) � 1¡ 0=1
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Example 21. Compute

������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������.
Solution. We can expand by the second column:������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������=¡0
��������������
0 1 5
0 2 1
2 8 5

��������������+2

��������������
1 3 4
0 2 1
2 8 5

��������������¡ 0
��������������
1 3 4
0 1 5
2 8 5

��������������+0

��������������
1 3 4
0 1 5
0 2 1

��������������
[Of course, you don't have to spell out the 3� 3 matrices that get multiplied with 0.]
We can compute the remaining 3� 3 matrix in any way we prefer. One option is to expand by the first column:

2

��������������
1 3 4
0 2 1
2 8 5

��������������=2

�
+1

�������� 2 1
8 5

��������+2
�������� 3 4
2 1

��������
�
=2(1 � 2+2 � (¡5))=¡16

Comment. For cofactor expansion, choosing to expand by the second column is the best choice because this
column has more zeros than any other column or row.

The determinant of a triangular matrix is the product of the diagonal entries.

Why? Can you explain this (you can use the next example) using cofactor expansion?

Example 22. Compute

������������������
1 0 3 ¡1
0 3 1 5
0 0 ¡2 1
0 0 0 5

������������������.

Solution. Since the matrix is (upper) triangular,

������������������
1 0 3 ¡1
3 1 5
¡2 1

5

������������������=1 � 3 � (¡2) � 5=¡30.

Review.

� Effect of row (or column) operations on determinant.

� det(AB)= det(A)det(B)

� In particular, the LU decomposition provides us with a way to compute determinants:

If A=LU , then det(A)=det(L)det(U) and the latter determinants are just products of
diagonal entries (because both L and U are triangular).

Comment. Unless a row swap is required, we can compute the LU decomposition of A = LU using
only row operations of the form Ri+ cRj)Ri (those don't change the determinant!).
In that case, the matrix L will have 1's on the diagonal. In particular, det(L)= 1.
Consequently, in that case, det(A)=det(U).
Practical comment. For larger matrices, cofactor expansion is a terribly inefficient way of computing
determinants. Instead, Gaussian elimination (i.e. LU decomposition) is much more efficient.
On the other hand, cofactor expansion is a good choice when working by hand with small matrices.
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Sketch of Lecture 6 Mon, 1/22/2024

Example 23. (review) If A=
24 1 4
2 5
3 6

35, then its transpose is AT =
�
1 2 3
4 5 6

�
.

Recall that (AB)T =BTAT . This reflects the fact that, in the column-centric versus the row-centric interpre-
tation of matrix multiplication, the order of the matrices is reversed.
Comment. When working with complex numbers, the fundamental role is not played by the transpose but by
the conjugate transpose instead (we'll see that in our discussion of orthogonality): A�=AT .

For instance, if A=
�
1¡ 3i 5i
2+ i 3

�
, then A�=

�
1+3i 2¡ i
¡5i 3

�
.

Orthogonality

The inner product and distances

Definition 24. The inner product (or dot product) of v, w in Rn:

v �w = vTw= v1w1+ :::+ vnwn:

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity
and distributivity.
In addition: v �w=w �v.

Example 25.
24 1
2
3

35�
24 2
¡1
4

35=2¡ 2+ 12= 12

Definition 26.

� The norm (or length) of a vector v in Rn is

kvk = v �v
p

= v1
2+ :::+ vn

2
p

:

� The distance between points v and w in Rn is

dist(v ;w) = kv¡wk:

v

w

v −w

Example 27. For instance, in R2, dist
��

x1
y1

�
;
�
x2
y2

��
=
� x1¡x2

y1¡ y2

�= (x1¡x2)2+(y1¡ y2)
2

q
.

Example 28. Write kv¡wk2 as a dot product, and multiply it out.

Solution. kv¡wk2=(v¡w) � (v¡w)=v �v¡v �w¡w �v+w �w= kvk2¡ 2v �w+ kwk2

Comment. This is a vector version of (x¡ y)2= x2¡ 2xy+ y2.
The reason we were careful and first wrote ¡v �w¡w �v before simplifying it to ¡2v �w is that we should not
take rules such as v �w=w �v for granted. For instance, for the cross product v�w, that you may have seen
in Calculus, we have v�w=/ w�v (instead, v�w=¡w�v).

Armin Straub
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Orthogonal vectors

Definition 29. v and w in Rn are orthogonal if

v �w=0:

Why? How is this related to our understanding of right angles?
Pythagoras!
v and w are orthogonal
() kvk2+ kwk2= kv¡wk2||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=kvk2¡2v �w+kwk2
(by previous example)

() ¡2v �w=0

() v �w=0

v

w

v −w

Definition 30. We say that two subspaces V and W of Rn are orthogonal if and only if every
vector in V is orthogonal to every vector in W .

The orthogonal complement of V is the space V ? of all vectors that are orthogonal to V .
Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our
discussion in the next example which leads to Theorem 32. Namely, every space V can be written as V =col(A)
for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V ). It then follows
that V ?=null(AT) (which is clearly a space).

Example 31. Determine a basis for the orthogonal complement of V = span

(24 1
2
1

35;
24 3
1
2

35
)
.

Solution. The orthogonal complement V ? consists of all vectors

24 x1
x2
x3

35 that are orthogonal to
24 1
2
1

35 and
24 3
1
2

35.
Using the dot product, this means we must have

24 1
2
1

35�
24 x1
x2
x3

35=0 as well as

24 3
1
2

35�
24 x1
x2
x3

35=0.

Note that this is equivalent to the equations 1x1+2x2+1x3=0 and 3x1+1x2+2x3=0.

In matrix-vector form, these two equations combine to
�
1 2 1
3 1 2

�24 x1
x2
x3

35=� 0
0

�
.

This is the same as saying that

24 x1
x2
x3

35 has to be in null
��

1 2 1
3 1 2

��
. This means that V ?=null

��
1 2 1
3 1 2

��
.

[Note that we have done no computations up to this point! Instead, we have derived Theorem 32 below.]

We compute (fill in the work!) that V ?=null
��

1 2 1
3 1 2

��
=

RREF
null

��
1 0 3/5
0 1 1/5

��
= span

(24 ¡3/5¡1/5
1

35
)
.

Check.

24 ¡3/5¡1/5
1

35 is indeed orthogonal to both

24 1
2
1

35 and
24 3
1
2

35.
Note. If

24 x1
x2
x3

35 is orthogonal to both basis vectors

24 1
2
1

35 and
24 3
1
2

35, then it is orthogonal to every vector in V .

Indeed, vectors in V are of the form v=a

24 1
2
1

35+ b

24 3
1
2

35 and we have v �
24 x1
x2
x3

35=a

24 1
2
1

35�
24 x1
x2
x3

35
=0

+ b

24 3
1
2

35�
24 x1
x2
x3

35
=0

=0.

Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?

Armin Straub
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The following theorem follows by the same reasoning that we used in the previous example.

In that example, we started with V = col

 24 1 3
2 1
1 2

35
!
and found that V ?=null

��
1 2 1
3 1 2

��
.

Theorem 32. If V = col(A), then V ?= null(AT).
In particular, if V is a subspace of Rn with dim(V )= r, then dim(V ?)=n¡ r.

For short. col(A)?=null(AT )
Note that the second part can be written as dim(V )+dim(V ?)=n.
To see that this is true, suppose we choose the columns of A to be a basis of V . If V is a subspace of Rn with
dim(V )= r, then A is a r�n matrix with r pivot columns. Correspondingly, AT is a n� r matrix with r pivot
rows. Since n>r there are n¡r free variables when computing a basis for null(AT). Hence, dim(V ?)=n¡ r.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in R5. Determine the
dimension of V and its orthogonal complement V ?.

Solution. This means that dimV =3. By Theorem 32, we have dimV ?=5¡ 3=2.

Example 34. Determine a basis for the orthogonal complement of (the span of)

24 1
2
1

35.
Solution. Here, V = span

(24 1
2
1

35
)

and we are looking for the orthogonal complement V ?.

Since V = col

 24 1
2
1

35
!
, it follows from Theorem 32 that V ?=null([ 1 2 1 ]).

Computing a basis for null([ 1 2 1 ]) is easy since [ 1 2 1 ] is already in RREF.

Note that the general solution to [ 1 2 1 ]x=0 is

24 ¡2s¡ ts
t

35= s

24 ¡21
0

35+ t

24 ¡10
1

35.
A basis for V ?=null([ 1 2 1 ]) therefore is

24 ¡21
0

35;
24 ¡10

1

35.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector

24 1
2
1

35.

Armin Straub
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Sketch of Lecture 7 Wed, 1/24/2024

The fundamental theorem

Review. The four fundamental subspaces associated with a matrix A are

col(A); row(A); null(A); null(AT):

Note that row(A)= col(AT ). (In particular, we usually write vectors in row(A) as column vectors.)

Comment. null(AT) is called the left null space of A.
Why that name? Recall that, by definition x is in null(A) () Ax=0.

Likewise, x is in null(AT ) () ATx=0 () xTA=0.

[Recall that (AB)T =BTAT . In particular, (ATx)T =xTA, which is what we used in the last equivalence.]

Review. The rank of a matrix is the number of pivots in its RREF.
Equivalently, as showcased in the next result, the rank is the dimension of either the column or the row space.

Theorem 35. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m�n matrix of rank r.

� dim col(A)= r (subspace of Rm)

� dim row(A)= r (subspace of Rn) row(A)= col(AT)

� dimnull(A)=n¡ r (subspace of Rn)

� dimnull(AT)=m¡ r (subspace of Rm)

Example 36. Let A=
24 1 2
2 4
3 6

35. Determine bases for all four fundamental subspaces.

Solution. Make sure that, for such a simple matrix, you can see all of these that at a glance!

col(A)= span

(24 1
2
3

35
)
, row(A)= span

n�
1
2

�o
, null(A)= span

n�
¡2
1

�o
, null(AT)= span

(24 ¡21
0

35;
24 ¡30

1

35
)

Important observation. The basis vectors for row(A) and null(A) are orthogonal!
�
¡2
1

�
�
�
1
2

�
=0

The same is true for the basis vectors for col(A) and null(AT ):
24 1
2
3

35�
24 ¡21

0

35=0 and

24 1
2
3

35�
24 ¡30

1

35=0

Always. Vectors in null(A) are orthogonal to vectors in row(A). In short, null(A) is orthogonal to row(A).
Why? Suppose that x is in null(A). That is, Ax=0. But think about what Ax=0 means (row-product rule).
It means that the inner product of every row with x is zero. Which implies that x is orthogonal to the row space.

Theorem 37. (Fundamental Theorem of Linear Algebra, Part II)

� null(A) is orthogonal to row(A). (both subspaces of Rn)

Note that dimnull(A)+dimrow(A)=n. Hence, the two spaces are orthogonal complements.

� null(AT) is orthogonal to col(A).
Again, the two spaces are orthogonal complements. (This is just the first part with A replaced by AT .)

Armin Straub
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Example 38. Let A=
24 1 2 1 4
2 4 0 2
3 6 0 3

35. Check that null(A) and row(A) are orthogonal complements.

Solution.24 1 2 1 4
2 4 0 2
3 6 0 3

35  
R2¡2R1)R2

R3¡3R1)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 ¡3 ¡9

35  R3¡ 3
2
R2)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 0 0

35
 ¡1

2
R2)R2

24 1 2 1 4
0 0 1 3
0 0 0 0

35  R1¡R2)R1

24 1 2 0 1
0 0 1 3
0 0 0 0

35
Hence, null(A)= span

8>><>>:
266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775
9>>=>>;, row(A)= span

8>><>>:
266664
1
2
0
1

377775;
266664
0
0
1
3

377775
9>>=>>;.

null(A) and row(A) are indeed orthogonal, as certified by:266664
¡2
1
0
0

377775�
266664
1
2
0
1

377775=0;

266664
¡2
1
0
0

377775�
266664
0
0
1
3

377775=0;

266664
¡1
0
¡3
1

377775�
266664
1
2
0
1

377775=0;

266664
¡1
0
¡3
1

377775�
266664
0
0
1
3

377775=0:

In fact, null(A) and row(A) are orthogonal complements because the dimensions add up to 2+2=4.

In particular,

266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775;
266664
1
2
0
1

377775;
266664
0
0
1
3

377775 form a basis of all of R4.

Example 39. (extra) Determine bases for all four fundamental subspaces of

A=

24 1 2 1 3
2 4 0 1
3 6 0 1

35:
Verify all parts of the Fundamental Theorem, especially that null(A) and row(A) (as well as
null(AT) and col(A)) are orthogonal complements.

Partial solution. One can almost see that rank(A) = 3. Hence, the dimensions of the fundamental subspaces
are :::

Armin Straub
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Consistency of a system of equations

Example 40. (warmup)
24 1 2
3 1
0 5

35�� x1
x2

�
=x1

24 1
3
0

35+x2

24 2
1
5

35
Note that this means that the system
of equations

x1 + 2x2 = 1
3x1 + x2 = 1

5x2 = 1
can also be written as

24 1 2
3 1
0 5

35�� x1
x2

�
=

24 1
1
1

35:
[This was the motivation for introducing matrix-vector multiplication.]

In the same way, any system can be written as Ax= b, where A is a matrix and b a vector.
In particular, this makes it obvious that:

Ax=b is consistent () b is in col(A)

Recall that, by the FTLA, col(A) and null(AT) are orthogonal complements.

Theorem 41. Ax= b is consistent () b is orthogonal to null(AT)

Proof. Ax= b is consistent () b is in col(A) ()
FTLA

b is orthogonal to null(AT)

Note. b is orthogonal to null(AT) means that yTb=0 whenever yTA=0. Why?!

Example 42. Let A=
24 1 2
3 1
0 5

35. For which b does Ax= b have a solution?

Solution. (old)
24 1 2 b1
3 1 b2
0 5 b3

35  R2¡3R1)R2

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 5 b3

35  R3+R2)R3

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 0 ¡3b1+ b2+ b3

35
So, Ax= b is consistent if and only if ¡3b1+ b2+ b3=0.

Solution. (new) We determine a basis for null(AT):�
1 3 0
2 1 5

�
 R2¡2R1)R2

�
1 3 0
0 ¡5 5

�
 ¡1

5
R2)R2

�
1 3 0
0 1 ¡1

�
 R1¡3R2)R1

�
1 0 3
0 1 ¡1

�

We read off from the RREF that null(AT) has basis
24 ¡31

1

35.
b has to be orthogonal to null(AT ). That is, b �

24 ¡31
1

35=0. As above!

Comment. Below is how we can use Sage to (try and) solve Ax=b for b=

24 1
1
2

35 and b=
24 1
1
1

35.
Sage] A = matrix([[1,2],[3,1],[0,5]])

Sage] A.solve_right(vector([1,1,2]))�
1
5
;
2
5

�
Sage] A.solve_right(vector([1,1,1]))

Traceback (most recent call last):
ValueError: matrix equation has no solutions
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Sketch of Lecture 8 Fri, 1/26/2024

Least squares

Example 43. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope
for a perfect match.
For instance, Ax=b with 24 1 2

3 1
0 5

35x=
24 1
1
1

35
has no solution:

�
24 1
1
1

35 is not in col(A) since
24 1
1
1

35�
24 ¡31

1

35=/ 0 (see previous example).

� Instead of giving up, we want the xwhich makesAx and b as close as possible.

� Such x is characterized by the error Ax¡b being orthogonal to col(A)
(i.e. all possible Ax).

Ax

b

Definition 44. x̂ is a least squares solution of the system Ax= b if x̂ is such that Ax̂¡ b is
as small as possible (i.e. minimal norm).

� If Ax= b is consistent, then x̂ is just an ordinary solution. (in that case, Ax̂ ¡ b= 0)

� Interesting case: Ax= b is inconsistent. (in particular, if the system is overdetermined)

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares
solutions for all systems Ax= b.

Theorem 45. x̂ is a least squares solution of Ax= b
() ATAx̂=ATb (the normal equations)

Proof.
x̂ is a least squares solution of Ax=b
() Ax̂¡ b is as small as possible

() Ax̂¡ b is orthogonal to col(A)

()
FTLA

Ax̂¡b is in null(AT)

() AT(Ax̂¡b)=0

() ATAx̂=ATb
�

Armin Straub
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Example 46. Find the least squares solution to Ax= b, where

A=

24 1 1
¡1 1
0 0

35; b=

24 2
1
1

35:
Solution. First, ATA=

�
1 ¡1 0
1 1 0

�24 1 1
¡1 1
0 0

35=� 2 0
0 2

�
and ATb=

�
1 ¡1 0
1 1 0

�24 2
1
1

35=�
1
3

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
2 0
0 2

�
x̂=

�
1
3

�
.

Solving, we immediately find x̂=
�
1/2
3/2

�
.

Check. Since Ax̂=

24 2
1
0

35, the error is Ax̂¡b=
24 0

0
¡1

35. Recall that the error must be orthogonal to col(A)!

This error is indeed orthogonal to col(A) because
24 0

0
¡1

35�
24 1
¡1
0

35=0 and

24 0
0
¡1

35�
24 1
1
0

35=0.

Comment. Why are the normal equations so particularly simple (compare with example below for the typical
case) here? Note how each entry of the product ATA is computed as the dot product of two columns of A
(matrix products of a row of AT times a column of A). That ATA is a diagonal matrix reflects the fact that
the two columns of A are orthogonal to each other.

Example 47. Find the least squares solution to Ax= b, where

A=

24 1 2
3 1
0 5

35; b=

24 1
1
1

35:
Solution. First, ATA=

�
1 3 0
2 1 5

�24 1 2
3 1
0 5

35=� 10 5
5 30

�
and ATb=

�
1 3 0
2 1 5

�24 1
1
1

35=�
4
8

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
10 5
5 30

�
x̂=

�
4
8

�
.

Since
�
10 5
5 30

�¡1
=

1

275

�
30 ¡5
¡5 10

�
=

1

55

�
6 ¡1
¡1 2

�
, we find x̂= 1

55

�
6 ¡1
¡1 2

��
4
8

�
=

1

55

�
16
12

�
.

Check. Since Ax̂= 1

55

24 40
60
60

35, the error Ax̂¡b= 1

55

24 ¡15
5
5

35= 1

11

24 ¡31
1

35must be orthogonal to col(A).

The error is indeed orthogonal to col(A) because
24 1
3
0

35� 111
24 ¡31

1

35=0 and

24 2
1
5

35� 111
24 ¡31

1

35=0.

Armin Straub
straub@southalabama.edu

18



Any serious linear algebra problems are done by a machine. Let us see how to use the open-source
computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also just use
the input field on our course website.
Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.

Let's revisit Example 38 and let Sage do the work for us:

Sage] A = matrix([[1,2,1,4],[2,4,0,2],[3,6,0,3]])

Sage] A.rref()24 1 2 0
0 0 1
0 0 0

35
Similarly, if we wanted to compute a basis for null(AT), we can simply do:

Sage] A.transpose().rref()266664
1 0 0

0 1
3
2

0 0 0

377775
Here are some other standard things we might be interested in (compare with Example 17):

Sage] A = matrix([[4,0,2],[2,2,2],[1,0,3]])

Sage] A.eigenvalues()

[5; 2; 2]

Sage] A.eigenvectors_right()��
5;

��
1; 1;

1
2

��
; 1

�
; (2; [(1; 0; ¡ 1); (0; 1; 0)]; 2)

�
Sage] A.eigenmatrix_right()0BBBB@

24 5 0 0
0 2 0
0 0 2

35;
266664
1 1 0
1 0 1
1
2
¡1 0

377775
1CCCCA

Sage] A.rank()

3

Sage] A.determinant()

20

Sage] A.inverse()266666666664
3
10

0 ¡1
5

¡1
5

1
2
¡1
5

¡ 1
10

0
2
5

377777777775

Armin Straub
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Application: least squares lines

Given data points (xi; yi), we wish to find optimal parameters a; b such that yi�a+ bxi for all i.

Example 48. Determine the line that �best fits� the data points (2; 1); (5; 2); (7; 3); (8; 3).
Comment. Can you see that there is no line fitting the data perfectly? (Check out the last two points!)

Solution. We need to determine the values a; b for the best-fitting line y= a+ bx.
If there was a line that fit the data perfectly, then:

a+2b=1 (2; 1)

a+5b=2 (5; 2)

a+7b=3 (7; 3)

a+8b=3 (8; 3)

In matrix form, this is:

266664
1 x1
1 x2
1 x3
1 x4

377775
design matrixX

�
a
b

�
=

266664
y1
y2
y3
y4

377775
observation
vector y

(writing the points as (xi; yi))

Using our points, these equations become

266664
1 2
1 5
1 7
1 8

377775� ab
�
=

266664
1
2
3
3

377775. [This system is inconsistent (as expected).]

We compute a least squares solution.

XTX =

�
1 1 1 1
2 5 7 8

�266664
1 2
1 5
1 7
1 8

377775=� 4 22
22 142

�
; XTy =

�
1 1 1 1
2 5 7 8

�266664
1
2
3
3

377775=� 9
57

�
:

Solving the normal equations
�
4 22
22 142

��
a
b

�
=
�
9
57

�
, we find

�
a
b

�
=
�
2/7
5/14

�
.

Hence, the least squares line is y= 2

7
+

5

14
x.

The plot above shows our points together with this line. It does look like a very good fit!
Important comment. In what sense is this the line of �best fit�? By computing a least squares solution the way
we do, we are minimizing the error y¡X

�
a
b

�
. The components of that error are yi¡ (a+ bxi).

Hence, we see that we are minimizing the residual sum of squares SSres=
P

i [yi¡ (a+ bxi)]
2.

Also see the discussion after the next example (where we swap the role of x and y) as well as the example at
the beginning of next class (where we discuss making predictions and why minimizing SSres corresponds to
minimizing the error of those predictions).
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Example 49. (again) Determine the least squares line for the points (2; 1); (5; 2); (7; 3); (8; 3).

Solution. Let's repeat the computation we did in the previous example. This time, we let Sage do the actual
work for us:

Sage] X = matrix([[1,2],[1,5],[1,7],[1,8]]); y = vector([1,2,3,3])

Sage] (X.transpose()*X).solve_right(X.transpose()*y)�
2
7
;
5
14

�

Here are some intermediate steps to help see what's going on (and that it matches our earlier work):

Sage] X.transpose()*X�
4 22
22 142

�
Sage] X.transpose()*y

(9; 57)

Let's plot the least squares line y= 2

7
+

5

14
x in Sage to marvel at the good fit!

Sage] points = [[2,1],[5,2],[7,3],[8,3]]

Sage] scatter_plot(points)

2 3 4 5 6 7 8

1

1.5

2

2.5

3

Sage] scatter_plot(points) + plot(2/7+5/14*x,1,9)

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5
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Comment. As mentioned earlier, the least squares line minimizes the (sum of squares of the) vertical offsets:

http://mathworld.wolfram.com/LeastSquaresFitting.html

Comment. We get a (slightly) different �best fit� line if we change the role of x and y! Can you explain that?

Sage] X = matrix([[1,1],[1,2],[1,3],[1,3]]); y = vector([2,5,7,8])

Sage] (X.transpose()*X).solve_right(X.transpose()*y)�
¡ 7
11
;
30
11

�
Note that x=¡ 7

11
+

30
11
y is equivalent to y= 7

30
+

11
30
x.

Sage] scatter_plot([[2,1],[5,2],[7,3],[8,3]]) + plot(2/7+5/14*x,1,9) + plot(7/30+11/30*x,
1,9,color='red')

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5

The explanation is that (see pictures at the beginning of this example) we are minimizing vertical offsets in one
case and horizontal offsets in the other case.
In linear regression, the relationship between a dependent variable and one or more explanatory variables is
modeled. If y is the dependent variable, with x the explanatory variable, then it is natural to minimize the error
we make in �predicting y through x� (vertical offsets). See example at the beginning of next class!
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Sketch of Lecture 9 Mon, 1/29/2024

Example 50. A car rental company wants to predict the annual maintenance cost y (in
100USD/year) of a car using the age x (in years) of that car (as an explanatory variable). Based
on the observations (x; y) = (2; 1); (5; 2); (7; 3); (8; 3), predict the cost for a 4.5 year
old car (using linear regression).

Solution. Once we compute the regression line y= a+ bx (we already did that: y= 2

7
+

5

14x), our prediction
is 2
7
+

5

14
� 4.5= 53

28
� 1.89, that is, 189 USD/year.

Application: multiple linear regression

In statistics, linear regression is an approach for modeling the relationship between
a scalar dependent variable and one or more explanatory variables.

The case of one explanatory variable is called simple linear regression.

For more than one explanatory variable, the process is called multiple linear regres-
sion.

http://en.wikipedia.org/wiki/Linear_regression

The experimental data might be of the form (xi; yi; zi), where now the dependent variable zi
depends on two explanatory variables xi; yi (instead of just xi).

Example 51. Set up a linear system to find values for the parameters a; b; c such that z =
a+ bx+ cy best fits some given points (x1; y1; z1); (x2; y2; z2); :::

Solution. The equations a+ bxi+ cyi= zi translate into the system:266664
1 x1 y1
1 x2 y2
1 x3 y3
��� ��� ���

377775
design matrix A

24 a
b
c

35=
266664
z1
z2
z3
���

377775
observation
vectorz

Of course, this is usually inconsistent. To find the best possible a; b; c we compute a least squares solution by

solving ATA

24 a
b
c

35=ATz.
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Application: Fitting data to other curves

We can also fit the experimental data (xi; yi) using other curves.

Example 52. Set up a linear system to find values for the parameters a; b; c that result in the
quadratic curve y= a+ bx+ cx2 that best fits some given points (x1; y1); (x2; y2); :::
Solution. yi� a+ bxi+ cxi

2 with parameters a; b; c.

The equations yi= a+ bxi+ cxi
2 in matrix form:26666664

1 x1 x1
2

1 x2 x2
2

1 x3 x3
2

��� ��� ���

37777775
design matrixA

24 a
b
c

35=
266664
y1
y2
y3
���

377775
observation
vector y

Again, we determine values for a; b; c by computing a least squares solution to that system.

That is, we need to solve the system ATA

24 a
b
c

35=ATy.

Example 53. (homework) Use Sage to find values for a; b; c that result in the quadratic curve
y= a+ bx+ cx2 that best fits the points (0; 1); (1; 2); (2; 3); (3;¡4); (4;¡7); (5;¡12).
Solution. We first input the points:

Sage] points = [[0,1],[1,2],[2,3],[3,-4],[4,-7],[5,-12]]

We set up the system described in the previous example, then determine a least-squares solution.

Sage] X = matrix([[1,0,0],[1,1,1],[1,2,4],[1,3,9],[1,4,16],[1,5,25]])

Sage] y = vector([1,2,3,-4,-7,-12])

Sage] (X.transpose()*X).solve_right(X.transpose()*y)�
3
2
;
179
140

; ¡ 23
28

�
Hence, the best fitting quadratic curve is y= 3

2
+

179
140
¡ 23

28
x2. Here's a plot:

Sage] scatter_plot(points) + plot(3/2+179/140*x-23/28*x^2,0,5,color='red')

1 2 3 4 5

-12

-10

-8

-6

-4

-2

2

Advanced comment. If you are comfortable with Python, you can avoid typing out X and y:
[The plot command above now won't work anymore because we are overwriting x with numbers.]

Sage] X = matrix([[1,x,x^2] for x,y in points])

Sage] y = vector([y for x,y in points])
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Sketch of Lecture 10 Wed, 1/31/2024

More on orthogonality

Example 54. (review) Find the least squares solution to Ax= b, where

A=

24 4 0
0 2
1 1

35; b=

24 2
0
11

35:
Solution. First, ATA=

�
4 0 1
0 2 1

�24 4 0
0 2
1 1

35=� 17 1
1 5

�
and ATb=

�
4 0 1
0 2 1

�24 2
0
11

35=�
19
11

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
17 1
1 5

�
x̂=

�
19
11

�
. Solving, we find x̂=

�
1
2

�
.

Check. The error Ax̂¡b=
24 2

4
¡8

35 is indeed orthogonal to col(A). Because
24 2

4
¡8

35�
24 4
0
1

35=0 and
24 2

4
¡8

35�
24 0
2
1

35=0.

Orthogonal projections

The (orthogonal) projection b̂ of a vector b onto a subspaceW is the vector inW closest to b.

We can compute b̂ as follows:

� Write W = col(A) for some matrix A.

� Then b̂=Ax̂ where x̂ is a least squares solution to Ax=b. (i.e. x̂ solves ATAx̂=ATb)

Why? Why is Ax̂ the projection of b onto col(A)?
Because, if x̂ is a least squares solution then Ax̂¡ b is as small as possible (and any element in col(A) is of
the form Ax for some x).

Note. This is a recipe for computing any orthogonal projection! That's because every subspaceW can be written
as col(A) for some choice of the matrix A (take, for instance, A so that its columns are a basis for W ).

Assuming ATA is invertible (which, as discussed in the lemma below, is automatically the case if
the columns of A are independent), we have x̂=(ATA)¡1ATb and hence:

(projection matrix) The projection b̂ of b onto col(A) is (assuming cols of A are independent)

b̂=A(ATA)¡1AT|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
P

b:

The matrix P =A(ATA)¡1AT is the projection matrix for projecting onto col(A).

Example 55.

(a) What is the orthogonal projection of

24 2
0
11

35 onto W = span

(24 4
0
1

35;
24 0
2
1

35
)
?

(b) What is the matrix P for projecting onto W = span

(24 4
0
1

35;
24 0
2
1

35
)
?

(c) (once more) Using P , what is the orthogonal projection of

24 2
0
11

35 onto W ?

(d) Using P , what is the orthogonal projection of

24 1
0
0

35 onto W ?
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Solution.

(a) In other words, what is the orthogonal projection of b=

24 2
0
11

35 onto col(A) with A=
24 4 0
0 2
1 1

35.
In Example 54, we found that the system Ax=b has the least squares solution x=

�
1
2

�
.

The projection b̂ of b onto col(A) thus is Ax̂=
24 4 0
0 2
1 1

35� 1
2

�
=1

24 4
0
1

35+2

24 0
2
1

35=
24 4
4
3

35:
Check. The error b̂¡b=

24 2
4
¡8

35 needs to be orthogonal to col(A). Indeed:
24 2

4
¡8

35�
24 4
0
1

35=0 and
24 2

4
¡8

35�
24 0
2
1

35=0.

(b) Note that W = col(A) for A=
24 4 0
0 2
1 1

35 and that ATA=
�
17 1
1 5

�
. Thus (ATA)¡1= 1

84

�
5 ¡1
¡1 17

�
.

P =A(ATA)¡1AT =
1

84

24 4 0
0 2
1 1

35� 5 ¡1
¡1 17

��
4 0 1
0 2 1

�
=

1

21

24 20 ¡2 4
¡2 17 8
4 8 5

35

(c) The orthogonal projection of

24 2
0
11

35 onto W is P

24 2
0
11

35= 1

21

24 20 ¡2 4
¡2 17 8
4 8 5

3524 2
0
11

35= 1

21

24 84
84
63

35=
24 4
4
3

35.
Note. Of course, that agrees with what our computations in the first part. Note that computing P is
more work than what we did in in the first part. However, after having computed P once, we can easily
project many vectors onto W .

(d) The orthogonal projection of

24 1
0
0

35 onto W is P

24 1
0
0

35= 1

21

24 20 ¡2 4
¡2 17 8
4 8 5

3524 1
0
0

35= 1

21

24 20
¡2
4

35.
Check. The error

24 1
0
0

35¡ 1

21

24 20
¡2
4

35= 1

21

24 1
2
¡4

35 is indeed orthogonal to both

24 4
0
1

35 and
24 0
2
1

35.

Example 56. (extra)

(a) What is the matrix P for projecting onto W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
?

(b) Using the projection matrix, project

24 2
3
3

35 onto W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
.

Solution.

(a) Choosing A=

24 1 1
1 ¡1
1 1

35, the projection matrix P is A(ATA)¡1AT =

24 1 1
1 ¡1
1 1

35� 3 1
1 3

�¡1� 1 1 1
1 ¡1 1

�

=

24 1 1
1 ¡1
1 1

351
8

�
3 ¡1
¡1 3

��
1 1 1
1 ¡1 1

�
=
1

8

24 1 1
1 ¡1
1 1

35� 2 4 2
2 ¡4 2

�
=
1

2

24 1 0 1
0 2 0
1 0 1

35.
Comment. We can choose A in any way such that its columns are a basis for W . The final projection
matrix will always be the same.

(b) The projection is 1
2

24 1 0 1
0 2 0
1 0 1

3524 2
3
3

35= 1

2

24 5
6
5

35.
Check. The error

24 2
3
3

35¡ 1

2

24 5
6
5

35=
24 ¡1/20

1/2

35 is indeed orthogonal to W .
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Example 57. (extra)

(a) What is the orthogonal projection of

24 1
2
2

35 onto span

(24 1
0
1

35;
24 1

1
¡1

35
)
?

(b) What is the orthogonal projection of

24 1
2
2

35 onto span

(24 1
0
1

35
)
?

Solution. (final answer only) The projections are
�
11
6
;
1

3
;
7

6

�
T
and

�
3

2
; 0;

3

2

�
T
.

Lemma 58. If the columns of a matrix A are independent, then ATA is invertible.
Proof. Assume ATA is not invertible, so that ATAx=0 for some x=/ 0. Multiply both sides with xT to get

xTATAx=(Ax)TAx= kAxk2=0;

which implies that Ax=0. Since the columns of A are independent, this shows that x=0. A contradiction! �

Example 59. If P is a projection matrix, then what is P 2?

For instance. For P as in Example 56, P 2= 1

4

24 1 0 1
0 2 0
1 0 1

352= 1

2

24 1 0 1
0 2 0
1 0 1

35=P .

Solution. Can you see why it is always true that P 2=P?
[Recall that P projects a vector onto a space W (actually, W = col(P )). Hence P 2 takes a vector b, projects
it onto W to get b̂, and then projects b̂ onto W again. But the projection of b̂ onto W is just b̂ (why?!), so
that P 2 always has the exact same effect as P . Therefore, P 2=P .]

Example 60. True or false? If P is the matrix for projecting onto W , then W = col(P ).
Solution. True!
Why? The columns of P are the projections of the standard basis vectors and hence in W . On the other hand,
for any vector w in W , we have Pw=w so that w is a combination of the columns of P .
[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. rank(P )=dimW (because, for any matrix, rank(A)=dimcol(A))
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Sketch of Lecture 11 Fri, 2/2/2024

Review. The projection matrix for projecting onto col(A) is P =A(ATA)¡1AT .

Projecting onto 1-dimensional spaces

When we project onto a 1-dimensional space spanfwg, we usually just say that we are projecting
onto w.

The (orthogonal) projection of v onto w is
w �v
kwk2 w.

Why? Replace b with v and A with w in our general projection matrix formula to get w(wTw)¡1wTv, which
equals w �vkwk2w (note that wTv=w �v and wTw= kwk2 are scalars).

Comment. If you have taken Calculus 3, you have seen that formula before. Most likely, you were deriving it
using angles at that time. Namely, the dot product has the following connection to angles:

v �w= kvk kwk cos� where � 2 [0; �] is the angle between v and w

Why? You can derive this by repeating what we did, right after Definition 29 to show that v andw are orthogonal
if and only if v �w=0. Just replace Pythagoras with the law of cosines (c2= a2+ b2¡ 2ab cos� holds in any
triangle!).
Two obvious cases. Observe that the cases �=0 and �= 90� are clearly true.

We will not discuss angles much further in this class. Just in case it is helpful, here is the typical
argument given in Calculus 3 to determine the projection projwv of v onto w:

From the sketch, we see that �error� = v¡projwv
and that this error is orthogonal to w.

Basic trigonometry tells us that the length of projwv
is kvk cos�. Hence:

projw v = kvk cos�
length

w
kwk

direction

=
kvk kwk cos�

kwk
w
kwk =

�
v �w
kwk2

�
w

v

w

θ

“error”

proj
w
v

Orthogonal bases

Review. Vectors v1; :::;vn are a basis for V .

() V = spanfv1; :::;vng and v1; :::;vn are linearly independent.

() Any vector w in V can be written as w= c1v1+ :::+ cnvn in a unique way.
The latter is the practical reason why we care so much about bases!
V could be some abstract vector space (of polynomials or Fourier series), meaning that vectors are abstract
objects and not just our usual column vectors. However, as soon as we pick a basis of V , then we can represent
every (abstract) vector w by the (usual) column vector (c1; c2; :::; cn)T .
This means all of our results can be used, too, when working with these abstract spaces!

Definition 61. A basis v1; :::; vn of a vector space V is an orthogonal basis if the vectors
are (pairwise) orthogonal. If, in addition, the basis vectors have length 1, then this is called an
orthonormal basis.
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Example 62. The standard basis

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35 is an orthonormal basis for R3.

Example 63. Are the vectors

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
1

35 an orthogonal basis for R3? Is it orthonormal?

Solution.

24 1
¡1
0

35�
24 1
1
0

35=0,

24 1
¡1
0

35�
24 0
0
1

35=0,

24 1
1
0

35�
24 0
0
1

35=0.

So, this is an orthogonal basis.
On the other hand, the vectors do not all have length 1, so that this basis is not orthonormal.
Note. Orthogonal vectors are always linearly independent (see next class). Here, this certifies that the three
vectors are linearly independent (and hence a basis for R3).

Normalize the vectors to produce an orthonormal basis.
Solution.

24 1
¡1
0

35 has length
24 1
¡1
0

35�
24 1
¡1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
¡1
0

35
24 1
1
0

35 has length
24 1
1
0

35�
24 1
1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
1
0

35
24 0
0
1

35 has length
24 0
0
1

35�
24 0
0
1

35
s

=1 =) is already normalized:

24 0
0
1

35

The resulting orthonormal basis is 1

2
p

24 1
¡1
0

35; 1

2
p

24 1
1
0

35;
24 0
0
1

35.

Theorem 64. Suppose that v1; :::;vn are nonzero and pairwise orthogonal. Then v1; :::;vn are
linearly independent.
Proof. Suppose that c1v1+ :::+ cnvn=0. In order to show that v1; :::;vn are independent, we need to show
that c1= c2= :::= cn=0.
Take the dot product of v1 with both sides:

0 = v1 � (c1v1+ :::+ cnvn)

= c1v1 �v1+ c2v1 �v2+ :::+ cnv1 �vn
= c1v1 �v1= c1kv1k2

But kv1k=/ 0 and hence c1=0. Likewise, we find c2=0, :::, cn=0. Hence, the vectors are independent. �

Comment. Note that this result is intuitively obvious: if the vectors were linearly dependent, then one of
them could be written as a linear combination of the others. However, all these other vectors (and hence any
combination of them) are orthogonal to it.
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Orthogonal projections if we have an orthogonal basis

Lemma 65. (orthogonal projection if we have an orthogonal basis)
If v1; :::;vn are orthogonal, then the orthogonal projection of w onto spanfv1; :::;vng is

ŵ= w �v1
v1 �v1

v1

proj of w
onto v1

+ :::+ w �vn
vn �vn

vn

proj of w
onto vn

:

Proof. It suffices to show that the error w¡ ŵ is orthogonal to each vi. Indeed:

(w¡ ŵ) �vi=
�
w¡ w �v1

v1 �v1
v1¡ :::¡

w �vn
vn �vn

vn

�
�vi=w �vi¡

w �vi
vi �vi

vi �vi=0:

Alternatively, can you deduce the formula (say, in the case of an orthonormal basis) from our earlier formula for
the projection matrix? �
Important consequence. If v1; :::;vn is an orthogonal basis of V , and w is in V , then

w= c1v1+ :::+ cnvn with cj=
w �vj
vj �vj

:

If the v1; :::;vn are a basis, but not orthogonal, then we have to solve a system of equations to find the ci. That
is a lot more work than simply computing a few dot products.

Note. In other words, w decomposes as the sum of its projections onto each basis vector.
Note. If v1; :::;vn are orthonormal, then the denominators are all 1.

Example 66. What is the projection of

24 3
7
4

35 ontoW = spanfv1;v2g with v1=
24 1
¡1
0

35, v2=
24 1
1
0

35?
Comment. We know how to do this using least squares. (Do it for practice!)
However, realizing that v1 and v2 are orthogonal makes things easier.
[Actually, here, it is obvious what the projection is going to be if we realized that W is the x-y-plane.]

Solution. (using orthogonality) Because v1 and v2 are orthogonal, the projection is

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35
24 1
¡1
0

35
projection onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35
24 1
1
0

35
projection onto v2

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35=
24 3
7
0

35:

Important note. Note that, at this point, we can easily extend

24 1
¡1
0

35;
24 1
1
0

35 to an orthogonal basis of R3:

That is because the error

24 3
7
4

35¡
24 3
7
0

35=
24 0
0
4

35 is orthogonal to both of the existing basis vectors.

Therefore

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
4

35 is an orthogonal basis of R3.

This observation underlies the Gram-Schmidt process, which we will discuss next class.
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Example 67. Express

24 3
7
4

35
x

in terms of the basis

24 1
¡1
0

35
v1

;

24 1
1
0

35
v2

;

24 0
0
1

35
v3

.

Solution. Because v1;v2;v3 is an orthogonal basis of R3, we get (much as in the previous example):
24 3
7
4

35 = c1

24 1
¡1
0

35+ c2

24 1
1
0

35+ c3

24 0
0
1

35

=

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35

24 1
¡1
0

35
projection of x onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35

24 1
1
0

35
projection of x onto v2

+

24 3
7
4

35�
24 0
0
1

35
24 0
0
1

35�
24 0
0
1

35

24 0
0
1

35
projection of x onto v3

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35+ 4

1

24 0
0
1

35
Because we spelled out all the details this looks more involved than it is. We only computed 6 dot products!

Alternative. We could have solved

24 1 1 0
¡1 1 0
0 0 1

3524 c1
c2
c3

35=
24 3
7
4

35 to also find

24 c1
c2
c3

35=
24 ¡25

4

35.
The numbers are particularly easy here but in general, to find this solution, we have to go through the entire
process of Gaussian elimination. On the other hand, if we have an orthogonal basis, the former approach requires
less work, because it is just computing a few dot products.

Example 68. Express

24 3
7
4

35 in terms of the basis

24 1
1
0

35;
24 0
1
1

35;
24 1
0
1

35.
Solution. This is not an orthogonal basis, so we cannot proceed as in the previous example.

To write

24 3
7
4

35= c1

24 1
1
0

35+ c2

24 0
1
1

35+ c3

24 1
0
1

35, we need to solve

24 1 0 1
1 1 0
0 1 1

3524 c1
c2
c3

35=
24 3
7
4

35.
Solving that system (do it!), we find

24 c1
c2
c3

35=
24 3
4
0

35.
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Sketch of Lecture 12 Mon, 2/5/2024

Review. If v1; :::;vn are orthogonal, the orthogonal projection of w onto spanfv1; :::;vng is

ŵ= w �v1
v1 �v1

v1+ :::+ w �vn
vn �vn

vn:

Example 69.

(a) Project

24 3
2
1

35 onto W = span

(24 1
2
1

35;
24 2
¡1
0

35
)
.

(b) Express

24 3
2
1

35 in terms of the basis

24 1
2
1

35;
24 2
¡1
0

35;
24 1

2
¡5

35.
Solution.

(a) We note that the vectors

24 1
2
1

35,
24 2
¡1
0

35 are orthogonal to each other.

Therefore, the projection can be computed as

24 3
2
1

35�
24 1
2
1

35
24 1
2
1

35�
24 1
2
1

35

24 1
2
1

35+
24 3
2
1

35�
24 2
¡1
0

35
24 2
¡1
0

35�
24 2
¡1
0

35

24 2
¡1
0

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35.

Comment. If we didn't have an orthogonal basis for W = col

 24 1 2
2 ¡1
1 0

35
!
, then we would have to solve

the least squares problem

24 1 2
2 ¡1
1 0

35x=
24 3
2
1

35 instead to get the same final result (with more work).

(b) Note that this basis is orthogonal! Therefore, we can compute

24 3
2
1

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35+ 5

30

24 1
2
¡5

35.
(We proceed exactly as in the previous part to compute each coefficient as a quotient of dot products.)

Gram�Schmidt

(Gram�Schmidt orthogonalization)
Given a basis w1;w2; ::: for W , we produce an orthogonal basis q1; q2; ::: for W as follows:

� q1=w1

� q2=w2¡
�
projection of
w2 onto q1

�

� q3=w3¡
�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
� q4= :::

Note. Since q1; q2 are orthogonal,
�

projection of
w3 onto spanfq1; q2g

�
=

�
projection of
w3 onto q1

�
+

�
projection of
w3 onto q2

�
.

Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1; q2; ::: by the same approach but always normalizing each qi along the way. The reason this saves time
is that now the projections onto qi only require a single dot product (instead of two). This is called Gram�
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid working with square roots).
Note. When normalizing, the orthonormal basis q1; q2; ::: is the unique one (up to � signs) with the property
that spanfq1; q2; :::; qkg= spanfw1;w2; :::;wkg for all k=1; 2; :::.
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Example 70. Using Gram�Schmidt, find an orthogonal basis for W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
.

Solution. We already have the basis w1=

24 1
1
1

35, w2=

24 1
¡1
1

35 for W . However, that basis is not orthogonal.

We can construct an orthogonal basis q1; q2 for W as follows:

� q1=w1=

24 1
1
1

35

� q2=w2¡
�
projection of
w2 onto q1

�
=

24 1
¡1
1

35¡ 1

3

24 1
1
1

35= 1

3

24 2
¡4
2

35
Note. q2 is the error of the projection of w2 onto q1. This guarantees that it is orthogonal to q1.
On the other hand, since q2 is a combination of w2 and q1, we know that q2 actually is in W .

We have thus found the orthogonal basis

24 1
1
1

35; 2
3

24 1
¡2
1

35 for W (if we like, we can, of course, drop that 2
3
).

Important comment. By normalizing, we get an orthonormal basis for W : 1

3
p

24 1
1
1

35; 1

6
p

24 1
¡2
1

35.
Practical comment. When implementing Gram�Schmidt on a computer, it is beneficial (slightly less work)
to normalize each qi during the Gram�Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.
Comment. There are, of course, many orthogonal bases q1; q2 for W . Up to the length of the vectors, ours is
the unique one with the property that spanfq1g= spanfw1g and spanfq1; q2g= spanfw1;w2g.

A matrix Q has orthonormal columns () QTQ= I

Why? Let q1; q2; ::: be the columns of Q. By the way matrix multiplication works, the entries of QTQ are dot
products of these columns: 2664 ¡¡ q1

T ¡¡
¡¡ q2

T ¡¡
���

3775
24 j j
q1 q2 ���
j j

35=
24 1 0 0
0 1 0
0 0 ���

35
Hence, QTQ= I if and only if qi

Tqj=0 (that is, the columns are orthogonal), for i=/ j, and qi
Tqi=1 (that is,

the columns are normalized).

Example 71. Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775 obtained from Example 70 satisfies QTQ= I.
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Sketch of Lecture 13 Wed, 2/7/2024

The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram�Schmidt.

(QR decomposition) Every m�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)

How to find Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simplifies to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is an m � m orthogonal matrix (this means Q is square
and has orthonormal columns) and R a m� n upper triangular matrix. This is a tiny bit more work (and not
required for many applications): we need to complement �our� Q with additional orthonormal columns and add
corresponding zero rows to R. For square matrices this makes no difference.

Example 72. Determine the QR decomposition of A=
24 1 1
1 ¡1
1 1

35.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

We already did Gram�Schmidt in Example 70: from that work, we have Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775.
Hence, R=QTA=

"
1/ 3
p

1/ 3
p

1/ 3
p

1/ 6
p

¡2/ 6
p

1/ 6
p

#24 1 1
1 ¡1
1 1

35=" 3
p

1/ 3
p

0 4/ 6
p

#
.

Comment. The entries of R have actually all been computed during Gram�Schmidt, so that, if we pay attention,
we could immediately write down R (no extra work required). Looking back at Example 70, can you see this?

Check. Indeed, QR=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775" 3
p

1/ 3
p

0 4/ 6
p

#
=

24 1 1
1 ¡1
1 1

35 equals A.

Armin Straub
straub@southalabama.edu

34



Example 73. Using Gram�Schmidt, find an orthogonal basis for W = span

8<:
266664
0
3
0
0

377775;
266664
2
1
0
0

377775;
266664
1
1
1
1

377775
9=;.

Solution. We begin with the (not orthogonal) basis w1=

266664
0
3
0
0

377775, w2=

266664
2
1
0
0

377775, w3=

266664
1
1
1
1

377775.
We then construct an orthogonal basis q1; q2; q3:

� q1=w1=

266664
0
3
0
0

377775

� q2=w2¡
�
projection of
w2 onto q1

�
=

266664
2
1
0
0

377775¡ 3

9

266664
0
3
0
0

377775=
266664
2
0
0
0

377775

� q3=w3¡
�
projection of w3

onto spanfq1; q2g

�
=w3¡

�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
=

266664
1
1
1
1

377775¡ 3

9

266664
0
3
0
0

377775¡ 2

4

266664
2
0
0
0

377775=
266664
0
0
1
1

377775
Make sure you understand how q3 was designed to be orthogonal to both q1 and q2!
Also note that breaking up the projection onto spanfq1; q2g into the projections onto q1 and q2 is only
possible because q1 and q2 are orthogonal.

Hence,

266664
0
3
0
0

377775;
266664
2
0
0
0

377775;
266664
0
0
1
1

377775 is an orthogonal basis of W .

Important. Normalizing, we obtain an orthonormal basis:

266664
0
1
0
0

377775;
266664
1
0
0
0

377775; 1

2
p

266664
0
0
1
1

377775.

Example 74. Determine the QR decomposition of A=

266664
0 2 1
3 1 1
0 0 1
0 0 1

377775.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

We already did Gram�Schmidt in Example 73: from that work, we have Q=

26666664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37777775.
Hence, R=QTA=

2664 0 1 0 0
1 0 0 0

0 0 1/ 2
p

1/ 2
p

3775
266664
0 2 1
3 1 1
0 0 1
0 0 1

377775=
2664 3 1 1
0 2 1

0 0 2
p

3775.
Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 73, can you see this?
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Letting Sage do the work for us.

Sage] A = matrix(QQbar, [[0,2,1],[3,1,1],[0,0,1],[0,0,1]])

Sage] A.QR(full=false)0BBBB@
266664
0 1 0
1 0 0
0 0 0.7071067811865475?
0 0 0.7071067811865475?

377775;
24 3 1 1
0 2 1
0 0 1.414213562373095?

35
1CCCCA

Comment. Can you figure out what happens if you omit the full=false? Check out the comment under
Variations in the statement of the QR decomposition. On the other hand, the QQbar is telling Sage to compute
with algebraic numbers (instead of just rational numbers); if omitted, it would complain that square roots are
not available

Example 75. (extra) Determine the QR decomposition of A=
24 1 2 4
0 0 ¡5
0 3 6

35.
Solution. We first apply Gram�Schmidt orthonormalization to the columns of A. For a variation, like a computer,
we normalize after each step (rather than normalize at the end):

� b1=

24 1
0
0

35, so that q1=

24 1
0
0

35.

� b2=

24 2
0
3

35¡
 24 2

0
3

35� q1
!
q1=

24 0
0
3

35, so that q2=

24 0
0
1

35.

� b3=

24 4
¡5
6

35¡
 24 4

¡5
6

35� q1
!
q1¡

 24 4
¡5
6

35� q2
!
q2=

24 0
¡5
0

35, so that q3=

24 0
¡1
0

35.

Therefore, Q=

24 1 0 0
0 0 ¡1
0 1 0

35. Finally, R=QTA=

24 1 0 0
0 0 1
0 ¡1 0

3524 1 2 4
0 0 ¡5
0 3 6

35=
24 1 2 4
0 3 6
0 0 5

35.
In conclusion, we have found the QR decomposition:

24 1 2 4
0 0 ¡5
0 3 6

35
A

=

24 1 0 0
0 0 1
0 ¡1 0

35
Q

24 1 2 4
0 3 6
0 0 5

35
R

Comment. As noted before, we actually could write down R without any additional computation. Indeed, realize
that the second column of R, that is [2; 3; 0]T means that

2nd col of A=2q1+3q2:

Which we already knew from our computation of q2! Also, by construction, we know that the second column
of A is a linear combination of q1 and q2 only, and that q3 enters the story later on. This corresponds to the
fact that R is always upper triangular.

Letting Sage do the work for us.

Sage] A = matrix(QQbar, [[1,2,4], [0,0,-5], [0,3,6]])

Sage] A.QR()0@24 1 0 0
0 0 ¡1
0 1 0

35;
24 1 2 4
0 3 6
0 0 5

351A
Comment. The QQbar is telling Sage to compute with algebraic numbers (instead of just rational numbers); in
general, if omitted, it would complain that square roots are not available (because the matrices Q and R typically
involve square roots). Here, we are lucky that square roots didn't creep in.
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Example 76. (extra) Find the QR decomposition of A=
24 1 1 2
0 0 1
1 0 0

35.

Solution. (final answer only) A=QR with Q=

26666664
1

2
p

1

2
p 0

0 0 1
1

2
p ¡ 1

2
p 0

37777775 and R=
26666664

2
p 1

2
p 2

p

0
1

2
p 2

p

0 0 1

37777775.

Example 77. One practical application of the QR decomposition is solving systems of linear
equations.

Ax= b () QRx= b (now, multiply with QT from the left)

=) Rx=QTb

The last system is triangular and can be solved by back-substitution.
A couple of comments are in order:

� If A is n�n and invertible, then the �=)� is actually a �()�.

� The equation Rx=QTb is always consistent! (Recall that R is invertible.)
Indeed, if A is not n�n or not invertible, then Rx=QTb gives the least squares solutions!

Why? ATAx̂=ATb () (QR)TQR

=RTQTQR

x̂=(QR)Tb () RTRx̂=RTQTb () Rx̂=QTb

[For the last step we need that R is invertible, which is always the case when A is m�n of rank n.]

� So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in �numerical stability�.
What does that mean? When computing numerically, we use floating point arithmetic and approximate
each number by an expression of the form 0.1234 � 10¡16. A certain (fixed) number of bits is used to
store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent ¡16.
Now, here is something terrible that can happen in numerical computations: mathematically, the quantities
x and (x+ 1)¡ 1 are exactly the same. However, numerically, they might not. Take, for instance, x=
0.1234�10¡6. Then, to an accuracy of 4 decimal places, x+1=0.1000�101, so that (x+1)¡1=0.0000.
But x=/ 0. We completely lost all the information about x.
To be numerically stable, an algorithm must avoid issues like that.

x̂ is a least squares solution of Ax= b
() Rx̂=QTb (where A=QR)
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Sketch of Lecture 14 Fri, 2/9/2024

Review. A matrix A has orthonormal columns () ATA= I.

Example 78. Suppose Q has orthonormal columns. What is the projection matrix P for orthog-
onally projecting onto col(Q)?
Solution. Recall that, to project onto col(A), the projection matrix is P =A(ATA)¡1AT .

Since QTQ= I, to project onto col(Q), the projection matrix is P =QQT .
Comment. A familiar special case is when we project onto a unit vector q: in that case, the projection of b onto
q is (q � b)q= q(qTb)= (qqT )b, so the projection matrix here is qqT .

Comment. In particular, if Q is not square, then QTQ= I but QQT =/ I. In some sense, QQT still �tries� to
be as close to the identity as possible: since it is the matrix projecting onto col(Q) it does act like the identity
for vectors in col(Q). (Vectors not in col(Q) are sent to their projection, that is, the closest to themselves while
restricted to col(Q).)

Example 79. Suppose A is invertible. What is the projection matrix P for orthogonally projecting
onto col(A)?
Solution. If A is an invertible n � n matrix, then col(A) = Rn (because the n columns of A are linearly
independent and hence form a basis for Rn).
Since col(A) is the entire space we are not really projecting at all: every vector is sent to itself.
In particular, the projection matrix is P = I.

Definition 80. An orthogonal matrix is a square matrix with orthonormal columns.

[This is not a typo (but a confusing convention): the columns need to be orthonormal, not just orthogonal.]

An n�n matrix Q is orthogonal () QTQ= I

In other words, Q¡1=QT .

Review. Recall the following properties of determinants:

� det(AB)= det(A)det(B)
Comment. In fancy language, this means that the determinant is a group homomorphism between the
group of (invertible) n�n matrices and (nonzero) complex numbers. Note that, on the left hand, we
are multiplying matrices while, on the right hand, we are multiplying numbers. The key point is that it
doesn't matter which multiplication we do: the two multiplications are compatible.

� det(A¡1)= 1

det(A)

Comment. Can you derive this from the previous property?

� det(AT)= det(A)
Comment. We are familiar with this in the context of cofactor expansion: it doesn't matter whether
we expand by a column or by a row.

Example 81. What can we say about det(Q) if Q is orthogonal?

Solution. Write d = det(Q). Since Q¡1 = QT , we have 1

d
= d (recall that det(Q¡1) = 1 / det(Q) and

det(QT)=det(Q)) or, equivalently, d2=1. Hence, d=�1.
Both of these are possible as the examples Q=

�
1 0
0 1

�
and Q=

�
1 0
0 ¡1

�
illustrate.
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Preview: The spectral theorem

Example 82. (review) In Example 17, we diagonalized A=
24 4 0 2
2 2 2
1 0 3

35 as A=PDP¡1.

We found that one choice for P and D is P =
24 2 0 ¡1
2 1 0
1 0 1

35, D=
24 5 0 0
0 2 0
0 0 2

35.
Spell out what that tells us about A!
Solution. The diagonal entries 5; 2; 2 of D are the eigenvalues of A.
The columns of P are corresponding eigenvectors of A.

�
24 2
2
1

35 is a 5-eigenvector of A (that is, A

24 2
2
1

35=5

24 2
2
1

35).

� The 2-eigenspace of A is 2-dimensional. A basis is

24 0
1
0

35;
24 ¡10

1

35.

Example 83. Diagonalize the symmetric matrix A=
24 8 ¡6 2
¡6 7 ¡4
2 ¡4 3

35 as A=PDP¡1.

Review. Recall that a matrix A is symmetric if AT =A.

Solution. We let Sage do the work for us:

Sage] A = matrix([[8,-6,2],[-6,7,-4],[2,-4,3]])

Sage] A.eigenmatrix_right()0BBBBBB@
24 15 0 0

0 3 0
0 0 0

35;
26666664

1 1 1

¡1 1
2

2

1
2
¡1 2

37777775
1CCCCCCA

This ouput shows that A is diagonalizable as A=PDP¡1 with D=

24 15 0 0
0 3 0
0 0 0

35 and P =

266664
1 1 1

¡1 1

2
2

1

2
¡1 2

377775.
Just to make sure. This means that the eigenvalues of A are 15; 3; 0 (the diagonal entries of D).

Moreover, we have that

2664 1
¡1
1
2

3775 is a 15-eigenvector,
2664 1

1
2
¡1

3775 is a 3-eigenvector, and
24 1
2
2

35 is a 0-eigenvector.

Important observation. Note that the eigenspaces of A are orthogonal to each other here.
The spectral theorem says that this is true for all symmetric matrices A.

Example 84. Diagonalize the symmetric matrix A=
24 8 ¡6 2
¡6 7 ¡4
2 ¡4 3

35 as A=PDPT .

Solution. By the previous example, we can diagonalizeA as P~DP~¡1 with P~=

24 2 2 1
¡2 1 2
1 ¡2 2

35andD=

24 15 0 0
0 3 0
0 0 0

35.

(To avoid fractions, we just scaled the first two columns of P~, which are eigenvectors.)

Note that the columns of P~ are orthogonal (this is due the spectral theorem). If we normalize them (they all

have length 22+22+1
p

=3), then we obtain the orthogonal matrix P =
1

3

24 2 2 1
¡2 1 2
1 ¡2 2

35.
Since P¡1=PT , we now have A=PDPT .
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Example 85.

(a) Determine the eigenspaces of the symmetric matrix A=
�
1 2
2 4

�
.

(b) Diagonalize A as A=PDPT .

Solution.

(a) The characteristic polynomial is
�������� 1¡� 2

2 4¡�

��������=�2¡ 5�=�(�¡ 5), and so A has eigenvalues 5; 0.

The 5-eigenspace is null
��
¡4 2
2 ¡1

��
has basis

�
1
2

�
.

The 0-eigenspace is null
��

1 2
2 4

��
has basis

�
¡2
1

�
.

Important observation. The 5-eigenvector
�
1
2

�
and the 0-eigenvector

�
¡2
1

�
are orthogonal!

(b) Note that a usual diagonalization is of the form A=PDP¡1.
We need to choose P so that P¡1=PT , which means that P must be orthogonal (meaning orthonormal
columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]

Hence, we normalize the two eigenvectors to 1

5
p

�
1
2

�
and 1

5
p

�
¡2
1

�
.

With P =
1

5
p

�
1 ¡2
2 1

�
and D=

�
5 0
0 0

�
, we then have A=PDPT .
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Sketch of Lecture 15 Mon, 2/12/2024

Review: Diagonalizability

Example 86. (review) If A is a 2� 2 matrix with det(A) =¡8 and eigenvalue 4. What is the
second eigenvalue?

Solution. Recall that det(A) is the product of the eigenvalues (see below). Hence, the second eigenvalue is ¡2.

det(A) is the product of the eigenvalues of A.

Why? Recall how we determine the eigenvalues �1; �2; :::; �n of an n � n matrix A. We compute the
characteristic polynomial det(A¡�I) and determine the �i as the roots of that polynomial.
That means that we have the factorization det(A ¡ �I) = (�1 ¡ �)(�n ¡ �)���(�n ¡ �). Now, set � = 0 to
conclude that det(A)=�1�2����n.

Lemma 87. A matrix A is diagonalizable if and only if, for every eigenvalue � that is k times
repeated, the �-eigenspace of A has dimension k.
In short, an n�n matrix A is diagonalizable if and only if there exists a basis of Rn consisting of eigenvectors
of A (i.e. �there are enough eigenvectors�).

The next two examples illustrate that not all matrices are diagonalizable and that, even if a real
matrix is diagonalizable, the eigenvalues and eigenvectors might be complex.

Example 88. What are the eigenvalues and eigenvectors of A=
�
0 1
0 0

�
? Is A diagonalizable?

Solution. The characteristic polynomial is det
��
¡� 1
0 ¡�

��
=�2, which has �=0 as a double root.

However, the 0-eigenspace null(A)= span
n�

1
0

�o
is only 1-dimensional.

As a consequence, A is not diagonalizable.

Example 89. What are the eigenvalues and eigenvectors of A=
�
0 ¡1
1 0

�
? Is A diagonalizable?

Solution. The characteristic polynomial is det
��
¡� ¡1
1 ¡�

��
=�2+1= (�¡ i)(�+ i).

Hence, the eigenvalues are �i.

The i-eigenspace null
��
¡i ¡1
1 ¡i

��
has basis

�
i
1

�
.

The ¡i-eigenspace null
��

i ¡1
1 i

��
has basis

�
¡i
1

�
.

Thus, A has the diagonalization A=PDP¡1 with D=
�
i
¡i

�
and P =

�
i ¡i
1 1

�
.

Armin Straub
straub@southalabama.edu

41



The spectral theorem

Recall that a matrix A is symmetric if and only if AT =A.

Theorem 90. (spectral theorem, long version) Suppose A is a symmetric matrix.

� A is always diagonalizable.

� All eigenvalues of A are real.

� The eigenspaces of A are orthogonal.

Proof. We will prove (parts of) the spectral theorem later on. For now, we just appreciate that the spectral
theorem guarantees all these nice things to happen for symmetric matrices (for any specific A we know how to
determine whether A is diagonalizable and what its eigenspaces are).
Comment. The eigenspaces of A being orthogonal means that eigenvectors for different eigenvalues are always
orthogonal.
Important consequence. In the diagonalization A = PDP¡1, we can choose P to be orthogonal (in which
case P¡1= PT). In that case, the diagonalization takes the special form A= PDPT , where P is orthogonal
and D is diagonal.

(spectral theorem, compact version) A symmetric matrix A can always be diagonalized as
A=PDP T , where P is orthogonal and D is diagonal (and both are real).

How? We proceed as in the diagonalization A=PDP¡1. For a symmetric matrix A, we can arrange P to be
orthogonal, by normalizing its columns. If there is a repeated eigenvalue, then we also need to make sure to pick
an orthonormal basis for the corresponding eigenspace (for instance, using Gram�Schmidt).

Advanced comment. A matrix such that ATA=AAT is called normal. For normal matrices, the (complex!)
eigenspaces are again orthogonal to each other. However, normal matrices which are not symmetric will always
have complex eigenvalues. (In that case, the orthogonal matrix P gets replaced with a unitary matrix, the complex
version of orthogonal matrices, and the PT becomes the conjugate transpose P �=P�T .)

Example 91.

(a) Determine the eigenspaces of the symmetric matrix A=
�
1 3
3 1

�
.

(b) Diagonalize A as A=PDPT .

Solution.

(a) The characteristic polynomial is
�������� 1¡� 3

3 1¡�

��������=(�¡ 4)(�+2), and so A has eigenvalues 4;¡2.

The 4-eigenspace is null
��
¡3 3
3 ¡3

��
has basis

�
1
1

�
.

The ¡2-eigenspace is null
��

3 3
3 3

��
has basis

�
¡1
1

�
.

Important observation. The 4-eigenvector
�
1
1

�
and the ¡2-eigenvector

�
¡1
1

�
are orthogonal!

Review. The product of all eigenvalues ¡2 � 4=¡8 equals the determinant det(A)= 1¡ 9=¡8.

(b) Note that a usual diagonalization is of the form A=PDP¡1.
We need to choose P so that P¡1=PT , which means that P must be orthogonal (meaning orthonormal
columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]

Hence, we normalize the two eigenvectors to 1

2
p

�
1
1

�
and 1

2
p

�
¡1
1

�
.

With P =
1

2
p

�
1 ¡1
1 1

�
and D=

�
4 0
0 ¡2

�
, we then have A=PDPT .
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Example 92. (again, simplified) Diagonalize the symmetric matrix A=
�
1 3
3 1

�
as A=PDPT .

Solution. See Example 91 for a solution that illustrates how to diagonalize any symmetric matrix. For a simplified
solution, note that we can see right away that

�
1
1

�
is a 4-eigenvector (since the row sums are equal!).

Because the eigenspaces are orthogonal (since A is symmetric!),
�
¡1
1

�
must also be an eigenvector.

Indeed,
�
1 3
3 1

��
¡1
1

�
=
�

2
¡2

�
shows that the corresponding eigenvalues is ¡2.

We normalize the two eigenvectors and use them as the columns of P , so that P = 1

2
p

�
1 ¡1
1 1

�
is an orthogonal

matrix (P¡1=PT). With D=
�
4 0
0 ¡2

�
we then have A=PDPT .

Example 93. Let A be a symmetric 2 � 2 matrix with 7-eigenvector
�
2
5

�
and det(A) = ¡21.

Determine the second eigenvalue and a corresponding eigenvector.

Further, diagonalize A as A=PDPT .

Solution. A has ¡21
7
=¡3-eigenvector

�
¡5
2

�
.

Hence, A=PDPT with D=
�
7
¡3

�
and P =

1

29
p

�
2 ¡5
5 2

�
.

Comment. Recall that, because A is symmetric, the eigenvector must be orthogonal to
�
2
5

�
.

[In general,
�
a
b

�
and

�
¡b
a

�
are orthogonal.]

Let us prove the following important part of the spectral theorem.

Theorem 94. If A is symmetric, then the eigenspaces of A are orthogonal.
Proof. To prove the claim we need to show that, if v and w are eigenvectors of A with different eigenvalues
(say � and �), then v �w=0. Suppose therefore that Av=�v and Aw= �w with �=/ �.
First, we observe that, for any matrix A and vectors v, w, we have the following:

(Av) �w=(Av)Tw=(vTAT)w=vT(ATw)=v � (ATw)

If A is symmetric, we therefore have

(Av) �w=v � (Aw):

We now use that Av=�v and Aw= �w to conclude from the above that �v �w= �v �w.
However, since �=/ �, this is only possible if v �w=0. �
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Sketch of Lecture 16 Mon, 2/19/2024

Powers of matrices

Example 95. (warmup) Consider A=
�
¡2 0
0 3

�
.

� What are the eigenspaces?

� What are A¡1 and A100? What is An?

Solution.

�
�
1
0

�
is a ¡2-eigenvector, and

�
0
1

�
is a 3-eigenvector. In other words, the ¡2-eigenspace is span

n�
1
0

�o
and the 3-eigenspace is span

n�
0
1

�o
.

� A¡1=
�
¡1/2 0
0 1/3

�
and A100=

"
(¡2)100 0

0 3100

#
=

"
2100 0
0 3100

#
. In general, An=

�
(¡2)n 0
0 3n

�
.

Comment. Algebraically, the map v 7!Av looks very simple. However, notice that it is not so easy to say what
happens to, say, v=

�
3
4

�
geometrically. That is because two things are happening: part of the vector v is scaled

by ¡2, the other part is scaled by 3.

Example 96. If A has �-eigenvector v, then what can we say about A2?
Solution. A2 has �2-eigenvector v.
[Indeed, A2v=A(Av)=A(�v)=�Av=�2v. This is even easier in words: multiplying v with A has the effect
of scaling it by �; hence, multiplying it with A2 scales it by �2.]
Important comment. Similarly, A100 has �100-eigenvector v.

Example 97. If a matrix A can be diagonalized as A=PDP¡1, what can we say about An?
Solution. First, note that A2=(PDP¡1)(PDP¡1)=PD2P¡1: Likewise, An=PDnP¡1.
[The point being that Dn is trivial to compute because D is diagonal.]
In particular. A¡1=PD¡1P¡1

Important comment. In the previous example, we observed that, if A has �-eigenvector v, then An has �n-
eigenvector v. Note that this is also expressed in An=PDnP¡1, because the latter is a diagonalization of An.
The diagonalization shows that An and A have the same eigenvectors (since we can use the same matrix P ) and
that the eigenvalues of An are the n-th powers of the eigenvalues of A (which are the entries of the diagonal
matrix D).

(computing matrix powers) If A is a square matrix with diagonalization A=PDP¡1, then

An=PDnP¡1:

Example 98. Let A=
�
6 1
4 9

�
. Compute An.

Solution. First, we diagonalize: A=PDP¡1 with P =
�
1 ¡1
4 1

�
and D=

�
10

5

�
. (Fill in the details!)

An=PDnP¡1=
�
1 ¡1
4 1

��
10n

5n

�
1

5

�
1 1
¡4 1

�
=
1

5

�
1 ¡1
4 1

��
10n 10n

¡4 � 5n 1 � 5n
�
=
1

5

�
10n+4 � 5n 10n¡ 5n
4 � 10n¡ 4 � 5n 4 � 10n+5n

�
Check. Verify the cases n=0 (A0= I) and n=1.
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Example 99. (extra) Let A=

24 4 0 2
2 2 2
1 0 3

35. Determine An.

Solution. We first repeat our work from Example 17 to find a diagonalization of A:
By expanding by the second column, we find that the characteristic polynomial det(A¡�I) is��������������

4¡� 0 2
2 2¡� 2
1 0 3¡�

��������������=(2¡�)
�������� 4¡� 2

1 3¡�

��������=(2¡�)[(4¡�)(3¡�)¡ 2]= (2¡�)2(5¡�):

Hence, the eigenvalues are �=2 (with multiplicity 2) and �=5.

� �=5: null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =
RREF

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A= span

8<:
24 2
2
1

359=;
� �=2: null

0@24 2 0 2
2 0 2
1 0 1

351A =
RREF

null

0@24 1 0 1
0 0 0
0 0 0

351A= span

8<:
24 0
1
0

35;
24 ¡10

1

359=;
We therefore have the diagonalization A=PDP¡1 with P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
[Keep in mind that other choices for P and D exist.]

With some labor (do it!), we find P¡1= 1
3

24 1 0 1
¡2 3 ¡2
¡1 0 2

35.
It follows that

An = PDnP¡1

=

24 2 0 ¡1
2 1 0
1 0 1

3524 5n 0 0
0 2n 0
0 0 2n

351
3

24 1 0 1
¡2 3 ¡2
¡1 0 2

35
=

1
3

24 2 � 5n 0 ¡2n
2 � 5n 2n 0
5n 0 2n

3524 1 0 1
¡2 3 ¡2
¡1 0 2

35
=

1
3

24 2 � 5n+2n 0 2 � 5n¡ 2 � 2n
2 � 5n¡ 2 � 2n 3 � 2n 2 � 5n¡ 2 � 2n
5n¡ 2n 0 5n+2 � 2n

35:
Check. Notice that it is particularly easy to verify the cases n=0 (A0= I) and n=1.
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Sketch of Lecture 17 Wed, 2/21/2024

Application: Markov chains

Example 100. Consider a fixed population of people with or without active immunization against
some disease (like tetanus). Suppose that, each year, 40% of those unprotected get vaccinated
while 10% of those with immunization lose their protection.

What is the immunization rate in the long run? (The long term equilibrium.)
Solution.

unprotected immune0.4
0.6

0.1

0.9

xt: proportion of population unprotected at time t (in years)
yt: proportion of population immune at time t [Note that xt+ yt=1.]�

xt+1
yt+1

�
=

�
0.6xt+ 0.1yt
0.4xt+ 0.9yt

�
=

�
0.6 0.1
0.4 0.9

��
xt
yt

�
The matrixM =

�
0.6 0.1
0.4 0.9

�
is the transition matrix of this dynamical system, because it describes the transition

from time t to time t+1. This particular one is a Markov matrix (or stochastic matrix): its columns add to 1
and it has no negative entries.

Powers of the transition matrix. Note that
�
xn
yn

�
=Mn

�
x0
y0

�
. In other words, Mn describes the transition

over n years. In particular, the powers of M are the key to understanding what happens in this model over time.

Equilibrium.
�
x1
y1

�
is an equilibrium if

�
x1
y1

�
=
�
0.6 0.1
0.4 0.9

��
x1
y1

�
. In other words,

�
x1
y1

�
is an eigenvector with

eigenvalue 1.

The 1-eigenspace is null
��
¡0.4 0.1
0.4 ¡0.1

��
, which has basis

�
1
4

�
.

Since x1+ y1=1, we conclude that
�
x1
y1

�
=

1

1+ 4

�
1
4

�
=
�
1/5
4/5

�
.

Hence, the immunization rate in the long term equilibrium is 4/5= 80%.
[Ponder about why this is a reasonable value!]

Comment. What's the other eigenvalue of the transition matrix? No need to compute the characteristic poly-
nomial: we can easily see that it is 0.5= 0.6 � 0.9¡ 0.1 � 0.4 because the product of the eigenvalues equals the
determinant!

The 0.5-eigenspace is spanned by
�
¡1
1

�
.

Comment. Will the immunization rate always stabilize and approach the long term equilibrium? Yes! This
is a consequence of the other eigenvalue of the transition matrix satisfying j0.5j < 1. If we start in state�
x0
y0

�
= a

�
1
4

�
+ b

�
1
¡1

�
, then

�
xn
yn

�
=
�
0.6 0.1
0.4 0.9

�n� x0
y0

�
=1n � a

�
1
4

�
+(0.5)n � b

�
¡1
1

�
¡!

as n!1
a
�
1
4

�
.

Random comment. A rule of thumb is that a tetanus vaccination begins to wear off after about 10 years
(somewhat in line with the 0.1 transition proportion in this example). However, the tetanus immunzation rate
in the United States appears to be considerable less than the 80% we found in this (awfully simplistic) example.
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5940a3.htm

Example 101. Compute Mn for M =
�
0.6 0.1
0.4 0.9

�
.

Solution. In Example 98, we computed that A=
�
6 1
4 9

�
had powers An= 1

5

�
10n+4 � 5n 10n¡ 5n
4 � 10n¡ 4 � 5n 4 � 10n+5n

�
.

Since M =
1

10
A, this implies that Mn=

1

10n
An=

1

5

�
1+4 � 0.5n 1¡ 0.5n

4¡ 4 � 0.5n 4+ 0.5n

�
.

Note that Mn! 1

5

�
1 1
4 4

�
as n!1. This reflects the fact that 1

5

�
1
4

�
is the long term equilibrium.
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Example 102. (extra) Consider a fixed population of people with or without a job. Suppose
that, each year, 50% of those unemployed find a job while 10% of those employed lose their job.
What is the unemployment rate in the long term equilibrium?
Solution. Let xt and yt be the proportions of those employed and unemployed. Proceeding, as in the previous
example, the transition matrix is M =

�
0.9 0.5
0.1 0.5

�
.

employed no job0.1
0.9

0.5

0.5

The 1-eigenspace of M , that is null
��
¡0.1 0.5
0.1 ¡0.5

��
, has basis

�
5
1

�
. The corresponding equilibrium is 1

5+ 1

�
5
1

�
.

In particular, the unemployment rate in the long term equilibrium is 1/6� 16.7%.

Example 103. Which of the following are true for all square matrices A?

� Is it true that AT has the same eigenvalues as A?

� Is it true that AT has the same eigenspaces as A?

� Is it true that AT has the same characteristic polynomial as A?

Solution. True. False. True.
First, note that the characteristic polynomial det(A¡�I) is the same as det(AT ¡�I). [Make sure you can fill in
the details of why this is the case!] Hence, the eigenvalues (which are the roots of the characteristic polynomial)
are also the same for A and AT .
On the other hand, AT and A in general have very different eigenspaces. Take, for instance, the matrix A =�
0.6 0.1
0.4 0.9

�
from Example 100. Then both A and AT have eigenvalues �= 0.5; 1.

However, the 1-eigenspace of A is spanned by
�
1
4

�
, while the 1-eigenspace of AT is spanned by

�
1
1

�
.

Example 104. Show that a Markov matrix A (so that the columns of A sum to 1) always has
eigenvalue 1.
Solution. This follows because the transpose AT always has [ 1 1 ::: 1 ]T as an 1-eigenvector (by virtue of
the rows of AT summing to 1). [Make sure that makes sense!]
By the previous example, A must also have eigenvalue 1 (but we have no idea what a 1-eigenvector is until we
compute it).
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Sketch of Lecture 18 Fri, 2/23/2024

Application: PageRank

Example 105. Suppose the internet consists of only the three webpages A;B;C.

We wish to rank these webpages in order of �importance�.
The idea. Instead of analyzing each webpage (which would be a lot of work!) we
will try to only use the information how the pages are linked to each other. The
idea being that an �important� page should be linked to from many other pages.

A and B have a link to each other. Also, A links to C and C links to
B. If you keep randomly clicking from one webpage to the next, what
proportion of the time will you be at each page?
The idea. We will assign ranking to the pages according to how frequently such
a random surfer would visit these pages.

A B

C

Comment. Before we start computing, stop for a moment, and think about how you would rank the webpages.

Solution. Let at be the probability that we will be on page A at time t. Likewise, bt, ct are the probabilities
that we will be on page B or C.

The transition from one state to the next now works exactly as in the previous
example. We get the following transition matrix:

24 at+1
bt+1
ct+1

35=
266664
0 � at+1 � bt+0 � ct
1

2
� at+0 � bt+1 � ct

1

2
� at+0 � bt+0 � ct

377775=
266664
0 1 0
1

2
0 1

1

2
0 0

377775
24 at
bt
ct

35
To find the equilibrium state, we again determine an appropriate 1-eigenvector.

The 1-eigenspace is null

0@266664 ¡1 1 0
1
2
¡1 1

1
2

0 ¡1

377775
1Awhich has basis

24 2
2
1

35.

A B

C

0.5

0.5

1

1

The corresponding equilibrium state is 1
5

24 2
2
1

35. In this context, this is also known as the PageRank vector.

In other words, after browsing randomly for a long time, there is (about) a 2

5
= 40% chance to be at page A, a

2

5
= 40% chance to be at page B, and a 1

5
= 20% chance to be at page C.

We therefore rank A and B highest (tied), and C lowest.
Just checking. Maybe we were expecting B to be ranked above A, because B is the only page that has two
incoming links. However, if we are at page B, then our next click will be to page A, which is why A and B
receive equal ranking.

This method of ranking is the famous PageRank algorithm (underlying Google's search algo-
rithm).

By the way, the algorithm is named, not after ranking web�pages�, but after Larry Page (who founded Google
in 1998 together with Sergey Brin).
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Example 106. Suppose the internet consists of only the four webpages
A;B;C;D which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector.
Solution. Recall that we model a random surfer, who randomly clicks on links.
Let at be the probability that such a surfer will be on page A at time t. Likewise,
bt, ct, dt are the probabilities that the surfer will be on page B, C or D.

A B

C D

The transition probabilities are indicated in the diagram to the right. As in the
previous example, we obtain the following transition behaviour:

266664
at+1
bt+1
ct+1
dt+1

377775=
26666666666664
0 � at+

1

2
� bt+1 � ct+0 � dt

1

3
� at+0 � bt+0 � ct+0 � dt

1

3
� at+0 � bt+0 � ct+1 � dt

1

3
� at+

1

2
� bt+0 � ct+0 � dt

37777777777775=
26666666666664
0

1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0

37777777777775
=M

266664
at
bt
ct
dt

377775

A B

C D

1/3

1/3 1/3

1/2

1/21

1

To find the equilibrium state, we determine an appropriate 1-eigenvector of the transition matrix M .

The 1-eigenspace is null(M ¡ 1 � I)=null

0BBBB@
266666666664
¡1 1

2
1 0

1
3
¡1 0 0

1
3

0 ¡1 1
1
3

1
2

0 ¡1

377777777775

1CCCCA.

To compute a basis, we perform Gaussian elimination:

26666666666664
¡1 1

2
1 0

1

3
¡1 0 0

1

3
0 ¡1 1

1

3

1

2
0 ¡1

37777777777775  
RREF

2666666664
1 0 0 ¡2
0 1 0 ¡2

3

0 0 1 ¡5

3

0 0 0 0

3777777775
We conclude that the 1-eigenspace has basis

2666666664
2
2
3
5
3
1

3777777775. (Note that its entries add up to 2+ 2

3
+
5

3
+1=

16
3
.)

The corresponding equilibrium state is 3

16

2666666664
2
2
3
5
3
1

3777777775�
266664

0.375
0.125
0.313
0.188

377775. This is the PageRank vector.

[For instance, after browsing randomly for a long time, there is (about) a 12.5% chance to be at page B.]
Correspondingly, we rank the pages as A>C >D>B.

The real internet. [Google is getting more secretive about this kind of data, so the numbers are estimates from a while ago.]

� Google reports (2016) doing �trillions� of searches per year. [2 trillion means 63,000 searches per second.]

� Google's search index contains almost 50 billion pages (2016). [Estimated to exceed 100,000,000 gigabytes.]

� More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)

[The �average� user apparently only visits about 100 websites per month; wikipedia.org is one website, consisting of many webpages
(more than 2,000,000).]
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Gory details. (extra) There's nothing interesting about the Gaussian elimination above. Here are the full details:26666666666666666664

¡1 1

2
1 0

1

3
¡1 0 0

1

3
0 ¡1 1

1

3

1

2
0 ¡1

37777777777777777775
 

R2+
1
3
R1)R2

R3+
1
3
R1)R3

R4+
1
3
R1)R4

26666666666666666664

¡1 1

2
1 0

0 ¡5
6

1

3
0

0
1

6
¡2
3

1

0
2

3

1

3
¡1

37777777777777777775
 

R3+
1
5
R2)R3

R4+
4
5
R2)R4

26666666666666666664

¡1 1

2
1 0

0 ¡5
6

1

3
0

0 0 ¡3
5

1

0 0
3

5
¡1

37777777777777777775

 R4+R3)R4

2666666666666664
¡1 1

2
1 0

0 ¡5
6

1

3
0

0 0 ¡3
5

1

0 0 0 0

3777777777777775  

¡1R1)R1

¡6
5
R2)R2

¡5
3
R3)R3

2666666666666664
1 ¡1

2
¡1 0

0 1 ¡2
5

0

0 0 1 ¡5
3

0 0 0 0

3777777777777775  
R1+R3)R1

R2+
2
5
R3)R2

2666666666666664
1 ¡1

2
0 ¡5

3

0 1 0 ¡2
3

0 0 1 ¡5
3

0 0 0 0

3777777777777775  R1+
1
2
R2)R1

266666666664
1 0 0 ¡2
0 1 0 ¡2

3

0 0 1 ¡5
3

0 0 0 0

377777777775
Practical comment. The transition matrix we would get for the entire internet indexed by Google is prohibitingly
large (a 50 billion by 50 billion matrix). While gigantic in size, it is a very sparse matrix, meaning that almost
all of its entries are zero (each column has 50 billion entries but only a handful are nonzero, namely those
corresponding to a link to another webpage). This is typical for many applications in linear algebra: we often
deal with big but sparse matrices.
Another practical comment. It's not an issue in our simple example, but what if our random surfer gets stuck
on a webpage without links? Or, similarly, gets stuck in a loop of links? To deal with these, it is customary to
include �teleportation�. That is, each time, one of two things happens: with probability p (typically, something like
p=0.85) our surfer clicks a link as before; otherwise, with probability 1¡ p, he is teleported to some unrelated
other page. Further, if the surfer comes to a page without links, he would teleport away.
A final practical comment. In practical situations, the system might be too large for finding the equilibrium
vector by elimination, as we did above. An alternative to elimination is the power method: it is based on the idea
that the equilibrium vector is what we expect in the long-term. We can approximate this �long-term� behaviour
by simulating a few transitions. For instance, in our example, if we start with the state [ 1/4 1/4 1/4 1/4 ]T ,
which corresponds to equal chances of being on each webpage, then the next state (that is, after one random
click) is

M

266664
1/4
1/4
1/4
1/4

377775=
26666666666664
0

1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0

37777777777775
266664
1/4
1/4
1/4
1/4

377775=
266664

3/8
1/12
1/3
5/24

377775=
266664
0.375
0.083
0.333
0.208

377775:

Note that the ranking of the webpages is already A;C;D;B if we stop right here.

The state after that (that is, after two random clicks) is M2

266664
1/4
1/4
1/4
1/4

377775=
266664

0.375
0.125
0.333
0.167

377775, and M3

266664
1/4
1/4
1/4
1/4

377775=
266664

0.396
0.125
0.292
0.188

377775.

Observe how we are (overall) approaching the equilibrium vector

266664
0.375
0.125
0.313
0.188

377775.
Iterating like this is guaranteed to converge to a 1-eigenvector under mild technical assumptions on the transition
matrix (for instance, that all its entries be positive; in that case, the other eigenvalues � satisfy j�j< 1 so that
their contributions go to zero exponentially, as in Example 100).
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Sketch of Lecture 19 Mon, 2/26/2024

Application: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.
They are defined by the recursion Fn+1=Fn+Fn¡1 and F0=0, F1=1.
How fast are they growing? Have a look at ratios of Fibonacci numbers:
2

1
=2, 3

2
= 1.5, 5

3
� 1.667, 8

5
= 1.6, 13

8
= 1.625, 21

13
� 1.615, 34

21
� 1.619, :::

These ratios approach the golden ratio '= 1+ 5
p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

= 1+ 5
p

2
. This indeed follows from Theorem 108 below.

The crucial insight is the following simple observation:

Fn+2=Fn+1+Fn is equivalent to

�
Fn+2
Fn+1

�
=
�
1 1
1 0

��
Fn+1
Fn

�
.

In particular,
�
Fn+1
Fn

�
=
�
1 1
1 0

�n� F1
F0

�
.

Comment. Recurrence equations are discrete analogs of differential equations. We will later see the same idea
applied when we reduce the order of a differential equation by introducing additional equations.

Example 107. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as offspring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

Describe the transition from one month to the next.
Solution. Let at be the number of adult rabbit pairs after t months. Likewise, bt is the number of baby rabbit
pairs. Then the transition from one month to the next is described by�

at+1
bt+1

�
=

�
at+ bt
at

�
=

�
1 1
1 0

��
at
bt

�
:

That's precisely the transition for the Fibonacci numbers!

It follows that Fibonacci numbers count the number of rabbits in this model.
Comment. Note that the setup is very much as for Markov chains. Here, however, the outgoing values do not
add to 100% for each state. Consequently, we cannot expect an equilibrium (and, indeed, the number of rabbits
increases without bound).

Everything we observe here about Fibonacci numbers holds for other sequences that satisfy similar
recursion equations.
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Theorem 108. (Binet's formula) Fn=
1

5
p
h�

1+ 5
p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof.

� We already observed that thee recurrence Fn+2= Fn+1+ Fn translates into
�
Fn+2
Fn+1

�
=
�
1 1
1 0

��
Fn+1
Fn

�
and, thus,

�
Fn+1
Fn

�
=
�
1 1
1 0

�n� F1
F0

�
.

� We therefore diagonalize M =
�
1 1
1 0

�
as M =PDP¡1 with

D=

�
�1

�2

�
; P =

�
�1 �2
1 1

�
; �1=

1+ 5
p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Comment. �1 is the golden ratio!

� It follows that:�
Fn+1
Fn

�
=Mn

�
F1
F0

�
= PDnP¡1

�
1
0

�
=

�
�1 �2
1 1

��
�1
n

�2
n

�
1

�1¡�2

�
1 ¡�2
¡1 �1

��
1
0

�
=

"
�1
n+1 �2

n+1

�1
n �2

n

#
1

5
p
�

1
¡1

�
=

1

5
p
"
�1
n+1¡�2

n+1

�1
n¡�2n

#

� Hence, Fn=
1

5
p (�1

n¡�2n), which is the claimed formula. �

Comment. For large n, Fn� 1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡

�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

Comment. It follows from �2< 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Note that, given any Fibonacci-like recursion, we can apply our linear algebra skills in the same
fashion. The next example illustrates how this is set up.

Example 109. Suppose the sequence an satisfies an+3=3an+2¡ 2an+1+ 7an. Write down a
matrix-vector version of this recursion.

Solution.

24 an+3
an+2
an+1

35=
24 3 ¡2 7
1 0 0
0 1 0

3524 an+2
an+1
an

35
Important. If we write an=

24 an+2
an+1
an

35, then this is simply an+1=Man with M =

24 3 ¡2 7
1 0 0
0 1 0

35.
In particular, it follows that an=Mna0.
If we compute Mn, then this produces an explicit formula for an (the third entry of an). This formula is called
a Binet-like formula (in the case of the Fibonacci numbers, this is precisely the classical Binet formula).
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Sketch of Lecture 20 Wed, 2/28/2024

Review. Fibonacci numbers, Binet formula

Example 110. Consider the sequence an defined by an+2=2an+1+3an and a0=¡1, a1=5.

(a) Determine the first few terms of the sequence.

(b) Write down a matrix-vector version of the recursion.

(c) Find a Binet-like formula for an.

(d) Determine lim
n!1

an+1
an

.

Solution.

(a) ¡1; 5; 7; 29; 79; 245; 727; 2189; 6559; :::

(b) The recursion can be translated to
�
an+2
an+1

�
=

�
2 3
1 0

��
an+1
an

�
.

(c) (solution using matrix powers) Thus,
�
an+1
an

�
=
�
2 3
1 0

�n� a1
a0

�
.

After some work (do it!), we diagonalize
�
2 3
1 0

�
=PDP¡1 with D=

�
3 0
0 ¡1

�
and P =

�
3 ¡1
1 1

�
.

Therefore,
�
an+1
an

�
=PDnP¡1

�
a1
a0

�
=
�
3 ¡1
1 1

��
3n 0
0 (¡1)n

�
=
"
3n+1 (¡1)n+1
3n (¡1)n

#
1

4

�
1 1
¡1 3

��
5
¡1

�
=
�
1
¡2

�
=

"
3n+1¡ 2(¡1)n+1
3n¡ 2(¡1)n

#
.

In particular, an=3n¡ 2(¡1)n.
(simplified solution) The eigenvalues of

�
2 3
1 0

�
are 3 and ¡1.

Looking back at our work above, we can see that an therefore must have a formula of the form an =
C1 � 3n+C2 � (¡1)n for some unknown constants C1; C2 which we still need to figure out
Using the two initial conditions, we get two equations:
(a0=) C1+C2=¡1, (a1= ) 3C1¡C2=5.
Solving, we find C1=1 and C2=¡2 so that, in conclusion, an=3n¡ 2(¡1)n.

(d) It follows from the Binet-like formula that lim
n!1

an+1
an

=3 (the eigenvalue of largest absolute value).

Important comment. Right after computing the eigenvalues, we knew that this limit would be 3, except
in the special (degenerate) case of C1=0.

Definition 111. A sequence an satisfying a recursion of the form

an+d= r1an+d¡1+ r2an+d¡2+ :::+ rdan

is called C-finite (or, constant recursive) of order d.

For instance. For the Fibonacci numbers, d=2 and r1= r2=1.

In matrix-vector form.

26666664
an+d

an+d¡1
���

an+1

37777775=
2666666664
r1 r2 ��� rd¡1 rd
1 0

1 0
��� ���

1 0

3777777775
M

266664
an+d¡1
an+d¡2

���
an

377775
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By the same reasoning as for Fibonacci numbers, C-finite sequences have a Binet-like formula:

Theorem 112. (generalized Binet formula) Suppose the recursion matrix M has distinct
eigenvalues �1; :::; �d. Then

an=C1�1
n+C2�2

n+ :::+Cd�d
n

for certain numbers C1; :::; Cd.

For instance. For the Fibonacci numbers, �1=
1+ 5

p

2
, �2=

1¡ 5
p

2
, and C1=

1

5
p , C2=¡ 1

5
p .

Comment. A little more care is needed in the case that eigenvalues are repeated.

Corollary 113. Under the assumptions of the previous theorem, if �1 is the eigenvalue with the
largest absolute value and �1> 0, as well as �1=/ 0, then lim

n!1

an+1
an

=�1.

Proof. This follows from an=C1�1
n+C2�2

n+ :::+Cd�d
n because, for large n, the term C1�1 dominates the

others. Indeed, we have

an+1
an

=
C1�1

n+1+C2�2
n+1+ :::+Cd�d

n+1

C1�1
n+C2�2

n+ :::+Cd�d
n =

C1�1+C2�2

�
�2
�1

�n
+ :::+Cd�d

�
�d
�1

�n
C1+C2

�
�2
�1

�n
+ :::+Cd

�
�d
�1

�n ¡!n!1 C1�1
C1

=�1:

�

Example 114. Consider the sequence an defined by an+3= 4an+2¡ an+1¡ 6an and a0= 0,
a1=¡2, a2=2.

(a) Determine the first few terms of the sequence.

(b) Find a Binet-like formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) 0;¡2; 2; 10; 50; 178; 602; 1930; 6050; :::
Note that this sequence is C-finite of order 3.

(b) The recursion can be translated to

24 an+3
an+2
an+1

35=
24 4 ¡1 ¡6
1 0 0
0 1 0

3524 an+2
an+1
an

35.
Expanding by the 2nd row:

��������������
4¡� ¡1 ¡6
1 ¡� 0
0 1 ¡�

��������������=¡1 �
�������� ¡1 ¡6
1 ¡�

��������¡� � �������� 4¡� ¡6
0 ¡�

��������=¡�3+4�2¡�¡ 6

The eigenvalues of the transition matrix are the roots of this polynomial: �=¡1; 2; 3
[You will not be asked to find roots of cubic polynomials by hand.]
Hence, an=C1 � (¡1)n+C2 �2n+C3 �3n and we only need to figure out the two unknowns C1, C2, C3.
Using the three initial conditions, we get three equations:
(a0=) C1+C2+C3=0, (a1= ) ¡C1+2C2+3C3=¡2, (a2= ) C1+4C2+9C3=2.
Solving, we find C1=1, C2=¡2 and C3=1 so that, in conclusion, an=(¡1)n¡ 2 � 2n+3n.
Comment. Do you see how we might have found the characteristic polynomial directly from the recursion?

(c) It follows from the Binet-like formula that lim
n!1

an+1
an

=3 (the eigenvalue of largest absolute value).

Important comment. Right after computing the eigenvalues, we knew that this limit would be 3, except
in the special (degenerate) case of C3=0.
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Example 115. (extra) Consider the sequence an defined by an+2= 2an+1+ 4an and a0= 0,
a1=1. Determine lim

n!1

an+1
an

.

Solution. The recursion can be translated to
�
an+2
an+1

�
=

�
2 4
1 0

��
an+1
an

�
.

The eigenvalues of
�
2 4
1 0

�
are 1� 5

p
. Hence, an=C1(1+ 5

p
)n+C2(1¡ 5

p
)n for certain numbers C1, C2.

[Note that we cannot have C1=0, because then an=C2(1¡ 5
p

)n so that a0=0 would imply C2=0.]
Therefore, lim

n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from the Binet formulas.
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Sketch of Lecture 21 Fri, 3/1/2024

Example 116. Consider the sequence an defined by an+2=2an+1+5an and a0=0, a1=1.

(a) Determine the first few terms of the sequence.

(b) Find a Binet-like formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) 0; 1; 2; 9; 28; 101; 342; 1189; 4088; :::

(b) The recursion can be translated to
�
an+2
an+1

�
=

�
2 5
1 0

��
an+1
an

�
.

The eigenvalues of
�
2 5
1 0

�
are 1� 6

p
.

Hence, an=C1(1+ 6
p

)n+C2(1¡ 6
p

)n and we only need to figure out the values of C1 and C2.
Using the two initial conditions, we get two equations:
(a0= ) C1+C2=0, (a1= ) C1(1+ 6

p
)+C2(1¡ 6

p
)= 1.

Solving, we find C1=
1

2 6
p and C2=¡ 1

2 6
p so that, in conclusion, an=

(1+ 6
p

)n¡ (1¡ 6
p

)n

2 6
p .

Comment. Alternatively, we could have proceeded as we did previously in the case of the Fibonacci
numbers: starting with the recursion matrixM , we compute its diagonalizationM=PDP¡1. Multiplying
out PDnP¡1

�
a1
a0

�
, we obtain the Binet-like formula for an. However, this is more work than what we did.

(c) It follows from the Binet-like formula that lim
n!1

an+1
an

=1+ 6
p
� 3.44949.

Comment. Actually, we don't need the Binet-like formula for this conclusion. Just the eigenvalues and the
observation that C1 cannot be 0 are enough. [We cannot have C1=0, because then an=C2(1¡ 6

p
)n

so that a0=0 would imply C2=0.]

Another brief look at projections (and reflections)

(projections) Suppose that M is the projection matrix for projecting onto a subspace W .

� The 1-eigenspace of M is W .

� The 0-eigenspace of M is W?.

In particular, M is symmetric.

Why? By definition, the 1-eigenspace of M consists of those vectors that get projected to themselves. But those
are precisely the vectors in W (recall that projecting a vector v onto W means producing the vector in W that
is closest to v). Can you likewise spell out the situation for the 0-eigenspace?
Note that M cannot have further eigenvalues (because the dimensions of W and W? already add up to the
dimension of the space that we are working in).
Because the eigenvalues of M are real and the eigenspaces are orthogonal, the matrix M has a diagonalization
of the form M =PDPT (make sure you can explain why!) which implies that M is symmetric (that's because
MT =(PDPT)T =(PT)TDTPT =PDPT =M).
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Example 117. Let A be the matrix for orthogonally projecting onto W = span

(24 4
0
1

35;
24 0
2
1

35
)
.

(a) Diagonalize A (without first computing A) as A=PDP¡1.

(b) Diagonalize A as A=PDPT .
Comment. This gives us yet another way to get our hands on projection matrices: we can directly
write down the matrices P ; D for the diagonalization A = PDPT . The main point here is that the
diagonalization of a A nicely reveals all the information about the projection.
[Can you see that this is not really a �new� way of computing projection matrices? In particular, note
that, if Q is the matrix P with the third column omitted, then A=QQT .]

Solution.

(a) The eigenvalues of A are 1; 1; 0. The 1-eigenspace of A is W (2-dimensional), and the 0-eigenspace is
W? (1-dimensional).

We already have a basis for W . On the other hand, W?=null
��

4 0 1
0 2 1

��
has basis

24 ¡1/4¡1/2
1

35.
We therefore choose D=

24 1
1
0

35 and P =

24 4 0 ¡1/4
0 2 ¡1/2
1 1 1

35.
(b) In order to achieve a diagonalization PDPT we need to choose P to be orthogonal (which we can do

here because the eigenspaces are orthogonal).

Applying Gram�Schmidt to the basis w1 =

24 4
0
1

35, w2 =

24 0
2
1

35 (of the 1-eigenspace), we construct the

orthogonal basis q1=w1=

24 4
0
1

35, q2=w2¡ w2 � q1
q1 � q1

q1=

24 0
2
1

35¡ 1

17

24 4
0
1

35= 2

17

24 ¡217
8

35.
Next, we normalize the vectors

24 4
0
1

35, 1

17

24 ¡434
16

35,
24 ¡1/4¡1/2

1

35 to 1

17
p

24 4
0
1

35, 1

357
p

24 ¡217
8

35, 1

21
p

24 ¡1¡2
4

35.
We therefore choose D=

24 1
1
0

35 and P =

2664 4/ 17
p

¡2/ 357
p

¡1/ 21
p

0 17/ 357
p

¡2/ 21
p

1/ 17
p

8/ 357
p

4/ 21
p

3775.

By the way. Multiplying out A=PDPT , we can find that A= 1

21

24 20 ¡2 4
¡2 17 8
4 8 5

35 as in Example 55.

Example 118. Let A be the matrix for orthogonally projecting onto W = span

(24 1
1
1

35;
24 ¡10

1

35
)
.

(a) Diagonalize A (without first computing A) as A=PDP T .

(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) The eigenvalues of A are 1; 1; 0. The 1-eigenspace of A is W (2-dimensional), and the 0-eigenspace is
W? (1-dimensional). Note that we are lucky and already have an orthogonal basis for W . On the other

hand, W?=null
��

1 1 1
¡1 0 1

��
has basis

24 1
¡2
1

35.
We therefore choose D=

24 1
1
0

35 and, after normalizing columns, P =

2664 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775.
(b) A is not invertible (because 0 is an eigenvalue) and therefore also cannot be orthogonal. Like any projection

matrix, A is symmetric.

By the way. Multiplying out A=PDPT , we can find that A= 1

6

24 1 ¡2 1
¡2 4 ¡2
1 ¡2 1

35.

Armin Straub
straub@southalabama.edu

57



Sketch of Lecture 22 Mon, 3/11/2024

(reflections) Suppose that M is the matrix for reflecting through the plane W in 3-space.

� The 1-eigenspace of M is W . (dimension 2)

� The ¡1-eigenspace of M is W?. (dimension 1)

In particular, M is symmetric.

Why? By definition, the 1-eigenspace of M consists of those vectors that get reflected to themselves. But those
are precisely the vectors in the plane W (only vectors on the plane are unchanged by the reflection). On the
other hand, the¡1-eigenspace consists of those vectors v that get reflected to¡v (the exact opposite direction).
These are precisely the vectors orthogonal to the plane.
As in the case of projection matrices, because the eigenvalues are real and the eigenspaces are orthogonal, the
reflection matrices are symmetric.
Comment. In this context, the line W? is often called the normal line of the plane W .

Example 119. Let A be the matrix for reflecting through the plane W = span

(24 1
1
1

35;
24 ¡10

1

35
)
.

(a) Diagonalize A (without first computing A) as A=PDP T .

(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) The eigenvalues of A are 1; 1;¡1. The 1-eigenspace of A is W , and the ¡1-eigenspace is W?.

In order to achieve a diagonalization PDPT we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

As in the previous example, W?= span

(24 1
¡2
1

35
)
.

We therefore choose D=

24 1
1
¡1

35 and, after normalizing columns, P =

2664 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775.
(b) A is invertible (because 0 is not an eigenvalue).

Like any reflection matrix, A is symmetric.
Finally, note that A2= I (reflecting twice isn't doing anything), so that A¡1=A. It follows that A is
orthogonal, because A¡1=A=AT .

By the way. Multiplying out A=PDPT , we can find that A= 1

3

24 2 2 ¡1
2 ¡1 2
¡1 2 2

35.
Comment. Similarly, a n� n matrix corresponds to a reflection (through a hyperplane) if and only if it has a
(n¡ 1)-dimensional 1-eigenspace and a 1-dimensional ¡1-eigenspace and these two spaces are orthogonal.

An alternative way of computing reflection matrices. Realize that, if n is the vector orthogonal to the plane
(i.e. n is the normal vector of the plane), then reflecting v means sending it to v¡ 2(projection of v onto n).

We already observed that n=

24 1
¡2
1

35.
Hence, the reflection of v is v¡ 2(projection of v onto n)=v¡ 2nn � v

n �n =v¡ 2
nnTv

nTn
=
�
I ¡ 2nn

T

nTn

�
v.

Accordingly, the reflection matrix is A= I ¡ 2nn
T

nTn
=

24 1
1
1

35¡ 2

6

24 1 ¡2 1
¡2 4 ¡2
1 ¡2 1

35= 1

3

24 2 2 ¡1
2 ¡1 2
¡1 2 2

35.
Comment. In other words, we got A from subtracting 2 times the projection matrix onto n from I.
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Application: Linear differential equations

Example 120. (warmup) Solve the differential equation (DE) y 0=2.
Solution. From calculus, we know that the solutions are of the form y(t)= 2t+C.
Comment. To get a unique solution, we need to specify additional information, like an initial condition.

Example 121. (warmup) Solve the initial value problem (IVP) y 0=2, y(0)= 1.
Solution. This has the unique solution y(t)= 2t+1.

Example 122. Which functions y(t) satisfy the differential equation y 0= y?

Solution. y(t)= et and, more generally, y(t)=Cet. (And nothing else.)

(exponential function) et is the unique solution to y 0= y, y(0)= 1.

From here, it follows that et=1+ t+ t2

2!
+ t3

3!
+ :::.

The latter is the Taylor series for et at t=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dt

t3

3!
=
t2

2!
.

Example 123. Show that the differential equation y 0=3y is solved by y(t)=Ce3t.

Solution. Indeed, if y(t)=Ce3t, then y 0(t)= 3Ce3t=3y(t).
Comment. It is important to realize that we can always easily check whether a function solves a differential
equation. This means that (although you might be unfamiliar with the techniques for solving) you can use
computer algebra systems like Sage to solve differential equations without trust issues.

Example 124. Solve the differential equation y 0= ay with initial condition y(0)= y0.

Solution. As in the previous example, the general solution to y 0= ay is y(t)=Ceat.
Since y(0)=Ce0=C= y0, we conclude that the unique solution to the IVP is y(t)= eaty0.
Comment. It looks silly to write eaty0 instead of y0eat here, but we will soon replace the number a with a
matrix A, and in that case only eAty0 makes sense.

Example 125. Our goal is to solve (systems of) differential equations like:
y1
0 = 2y1
y2
0 = ¡y1 +3y2 +y3
y3
0 = ¡y1 +y2 +3y3

y1(0) = 1
y2(0) = 0
y3(0) = 2

In matrix form, this becomes

y0=

24 2 0 0
¡1 3 1
¡1 1 3

35y; y(0)=

24 1
0
2

35:
The key idea will be to solve y0=Ay by introducing eAt.

Theorem 126. The solution to y 0=Ay, y(0)= y0 is y(t)= eAty0:

Recall from Example 124 that the solution to y 0=ay, y(0)= y0 is y(t)= eaty0: Here, however, At is a matrix
and so we need to make sense of the matrix exponential. Next time, we will define eA by the familiar Taylor
series for ex.
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Sketch of Lecture 23 Wed, 3/13/2024

Definition 127. Let A be n�n. The matrix exponential is

eA= I +A+ 1
2!
A2+ 1

3!
A3+ ���

Why? As a consequence of this definition (which is the motivation for that definition in the first place),

d
dt
eAt =

d
dt

�
I +At+

1
2!
A2t2+

1
3!
A3t3+ ���

�
= 0+A+A2 t+

1
2!
A3t2+ ���=AeAt:

Therefore, y(t)= eAty0 indeed solves the initial value problem y0=Ay, y(0)= y0.

How to actually compute eA? Well, this Taylor series involves the powers An of A. How would you compute,
say, A100? The answer is diagonalization!

Theorem 128. Suppose A=PDP¡1. Then, eA=PeDP¡1.

Why? Recall that, if A=PDP¡1, then An=PDnP¡1.

eA = I +A+
1
2!
A2+

1
3!
A3+ ���

= I +PDP¡1+
1
2!
PD2P¡1+

1
3!
PD3P¡1+ ���

= P

�
I +D+

1
2!
D2+

1
3!
D3+ ���

�
P¡1=PeDP¡1

Comment. By the same argument, if A=PDP¡1, then f(A)=Pf(D)P¡1 for every �nice� function f .
Here, �nice� means that f has a convergent Taylor series f(x)=

P
n>0 anx

n.

More explicitly, if A=P diag(�1; :::; �n)P¡1, then f(A)=P diag(f(�1); :::; f(�n))P¡1.

Example 129. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.

Example 130. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+
�
2 0
0 5

�
+ 1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for every diagonal matrix D.

In particular, for At=
�
2t 0
0 5t

�
, eAt=

�
1 0
0 1

�
+
�
2t 0
0 5t

�
+ 1

2!

"
(2t)2 0

0 (5t)2

#
+ ���=

"
e2t 0

0 e5t

#
.

Example 131. (homework) Diagonalize A=
24 2 0 0
¡1 3 1
¡1 1 3

35.
Solution. (final solution only) A=PDP¡1 with P =

24 1 1 0
1 0 1
0 1 1

35 and D=

24 2
2
4

35.
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Example 132. Solve the initial value problem

y 0=

24 2 0 0
¡1 3 1
¡1 1 3

35y ; y(0)=

24 1
2
1

35:
Solution. Recall that the solution to y0=Ay, y(0)= y0 is y= eAty0.

� First, we diagonalize:

For A=

24 2 0 0
¡1 3 1
¡1 1 3

35, A=PDP¡1 with P =

24 1 1 0
1 0 1
0 1 1

35 and D=

24 2
2
4

35. (That's homework!)

� We can then compute the solution y(t)= eAty0:

y(t)= eAty0 = PeDtP¡1y0

=

24 1 1 0
1 0 1
0 1 1

35
2664 e2t

e2t

e4t

3775
24 1 1 0
1 0 1
0 1 1

35¡124 1
2
1

35

=

24 1 1 0
1 0 1
0 1 1

35
2664 e2t

e2t

e4t

3775
24 1
0
1

35

=

24 1 1 0
1 0 1
0 1 1

35
2664 e2t

0

e4t

3775=
2664 e2t

e2t+ e4t

e4t

3775

Comment. It is not necessary to compute

24 1 1 0
1 0 1
0 1 1

35¡1 (of course, you could do it, but that's more work).

Instead, recall that A¡1b is the unique solution to Ax=b. Here, solving

24 1 1 0
1 0 1
0 1 1

35x=
24 1
2
1

35, we find x=
24 1
0
1

35.

Check. y=

2664 e2t

e2t+ e4t

e4t

3775 indeed solves the original problem:

y0=

2664 2e2t

2e2t+4e4t

4e4t

3775=�
24 2 0 0
¡1 3 1
¡1 1 3

35
2664 e2t

e2t+ e4t

e4t

3775; y(0)=

24 1
1+1
1

35=�
24 1
2
1

35
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Sketch of Lecture 24 Fri, 3/15/2024

Example 133. We only discuss linear differential equations (DEs). Non-linear DEs include y 0=
y2+1 or the second-order equation y 00= sin(ty 0)+ y.

The order of a DE indicates the highest occuring derivative.

Note, however, that y 00= sin(t)y 0+ y is a linear DE, because y and its derivatives occur linearly.

We will see here how to solve those linear DEs which have constant coefficients. That is, the coefficients of y
are constants, as opposed to functions (like sin(t)) depending on t.

Review.

� The solution to y 0=Ay, y(0)= y0 is y(t)= eAty0:

Why? Because y0(t)=AeAty0=Ay(t) and y(0)= e0Ay0= y0:

� If we have the diagonalization A=PDP¡1, then eA=PeDP¡1 (and eAt=PeDtP¡1).

� If A=
�
2 0
0 5

�
, then eA=

"
e2 0

0 e5

#
and eAt=

"
e2t 0

0 e5t

#
.

Example 134. Solve the initial value problem y 0=
�

0 ¡2
¡1 1

�
y, y(0)=

�
3
0

�
.

Solution.

� A=
�

0 ¡2
¡1 1

�
has characteristic polynomial ¡�(1¡�)¡ 2= (�+1)(�¡ 2).

Hence, the eigenvalues of A are ¡1; 2.

The ¡1-eigenspace null
��

1 ¡2
¡1 2

��
has basis

�
2
1

�
.

The 2-eigenspace null
��
¡2 ¡2
¡1 ¡1

��
has basis

�
¡1
1

�
.

Hence, A=PDP¡1 with P =
�
2 ¡1
1 1

�
and D=

�
¡1

2

�
.

� Finally, we compute the solution y(t)= eAty0:

y(t) = PeDtP¡1y0

=

�
2 ¡1
1 1

�"
e¡t

e2t

#
"
2e¡t ¡e2t

e¡t e2t

#

1
3

�
1 1
¡1 2

��
3
0

�
�
1
¡1

�
=

"
2e¡t+ e2t

e¡t¡ e2t

#

Check. Since it is simple to check, it would be almost criminal to not verify that y(0)=
�
2+1
1¡ 1

�
=
�
3
0

�
.

Example 135. (homework) Suppose that eMt= 1

10

"
et+9e2t 3et¡ 3e2t
3et¡ 3e2t 9et+ e2t

#
.

(a) Without doing any computations, determine Mn.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M .
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Solution.

(a) Recall that eMt=PeDtP¡1 while Mn=PDnP¡1, provided that M =PDP¡1. The fact the formula
for eMt features et and e2t, means that the eigenvalues of M must be 1 and 2. Hence,

D=

�
1
2

�
; eDt=

"
et

e2t

#
; Dn=

�
1
2n

�
:

Therefore, we just need to replace et by 1n=1 as well as e2t by 2n to get:

Mn=
1
10

�
1+9 � 2n 3¡ 3 � 2n
3¡ 3 � 2n 9+2n

�

(b) In particular, we see that the underlying matrix is M =M1=
1

10

�
1+9 � 2 3¡ 3 � 2
3¡ 3 � 2 9+2

�
=

1

10

�
19 ¡3
¡3 11

�
.

[Alternatively, we can find M by computing d

dt
eMt=MeMt and then setting t=0.]

(c) The eigenvalues are 1 and 2.

Looking at the coefficients of et in the first column of eMt, we can see that
�
1
3

�
is a 1-eigenvector.

[We can also look the second column of eMt, to obtain
�
3
9

�
which is a multiple and thus equivalent.]

Likewise, we find that
�

9
¡3

�
or, equivalently,

�
¡3
1

�
is a 2-eigenvector.

Higher-order differential equations

Example 136. Write the (second-order) differential equation y 00=2y 0+ y as a system of (first-
order) differential equations.

Solution. Write y1= y and y2= y 0. Then y00=2y 0+ y becomes y2
0 =2y2+ y1.

Therefore, y 00=2y0+ y translates into the first-order system
�
y1
0 = y2
y2
0 = y1+2y2

.

In matrix form, this is y0=
�
0 1
1 2

�
y.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Note. The �trick� of looking at the pair
�
y
y 0

�
instead of a single function is what we used to translate the

Fibonacci recurrence into a 2� 2 system.

Example 137. Write the (third-order) differential equation y 000= 3y 00¡ 2y 0+ y as a system of
(first-order) differential equations.

Solution. Write y1= y, y2= y 0 and y3= y 00.

Then, y000=3y00¡ 2y 0+ y translates into the first-order system

8<:y1
0 = y2
y2
0 = y3
y3
0 = y1¡ 2y2+3y3

.

In matrix form, this is y0=

24 0 1 0
0 0 1
1 ¡2 3

35y.
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Sketch of Lecture 25 Mon, 3/18/2024

Example 138. Consider the following system of (second-order) initial value problems:

y1
00=2y10 ¡ 3y20 +7y2
y2
00=4y10 + y2

0 ¡ 5y1
y1(0)=2; y10(0)= 3; y2(0)=¡1; y20(0)= 1

Write it as a first-order initial value problem in the form y 0=Ay, y(0)= y0.

Solution. Introduce y3= y1
0 and y4= y2

0 . Then, the given system translates into

y0=

266664
0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y; y(0)=

266664
2
¡1
3
1

377775:

The Jordan normal form

Note that we currently only know how to compute eAt when A is diagonalizable. Our next goal
is to be able to compute the matrix exponential for all matrices.

Example 139. Diagonalize, if possible, the matrix A=
�
4 1
4

�
.

Solution. The eigenvalues of A are 4; 4.

However, the 4-eigenspace null
��

0 1
0

��
is only 1-dimensional.

Hence, A is not diagonalizable.

Definition 140. A �-Jordan block is a matrix of the form

26666664
� 1

� ������ 1
�

37777775.
Note that if this matrix is m�m, then its only eigenvalue is � (repeated m times).
As in the previous example, the �-eigenspace is 1-dimensional (which is as small as possible).

Theorem 141. (Jordan normal form) Every n�n matrix A can be written as A=PJP¡1,
where J is a block diagonal matrix

J =

266664
J1

J2
���

Jr

377775
with each Ji a Jordan block. J is called the Jordan normal form of A.

Up to the ordering of the Jordan blocks, the Jordan normal form of A is unique.

Comment. If A is diagonalizable, then J is just a usual diagonal matrix.
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Example 142. What are the possible Jordan normal forms of a 3� 3 matrix with eigenvalues 4;
4; 4?

Solution.

24 4
4
4

35,
24 4

4 1
4

35,
24 4 1

4 1
4

35
The dimension of the 4-eigenspace equals the number of Jordan blocks: 3, 2, 1, respectively.

Comment. Note that, say,

24 4 1
4
4

35 is equivalent to
24 4

4 1
4

35because the ordering of the diagonal blocks does
not matter (as you know from diagonalization).

Example 143.

(a) What are the possible Jordan normal forms of a 3� 3 matrix with eigenvalues 3; 3; 3?

(b) What are the possible Jordan normal forms of a 4� 4 matrix with eigenvalues 3; 3; 3; 3?

(c) What if the matrix is 5� 5 and has eigenvalues 4; 4; 3; 3; 3?

Solution.

(a)

24 3
3
3

35,
24 3

3 1
3

35,
24 3 1

3 1
3

35
The dimension of the 3-eigenspace equals the number of Jordan blocks: 3, 2, 1, respectively.

Comment. Note that, say,

24 3 1
3
3

35 is equivalent to

24 3
3 1
3

35 because the ordering of the diagonal

blocks does not matter (as you known from diagonalization).

(b) Now, there are 5 possibilities:266664
3
3
3
3

377775,
266664
3
3
3 1
3

377775,
266664
3 1
3
3 1
3

377775,
266664
3
3 1
3 1
3

377775,
266664
3 1
3 1
3 1
3

377775
The dimension of the 3-eigenspace equals the number of Jordan blocks: 4, 3, 2, 2, 1, respectively.

(c)

2666666664
3
3
3
4
4

3777777775,
2666666664
3
3
3
4 1
4

3777777775,
2666666664
3
3 1
3
4
4

3777777775,
2666666664
3
3 1
3
4 1
4

3777777775,
2666666664
3 1
3 1
3
4
4

3777777775,
2666666664
3 1
3 1
3
4 1
4

3777777775
Note that this is just all possible (namely, 3) Jordan normal forms of a 3� 3 matrix with eigenvalues 3;
3; 3 combined with all possible (namely, 2) Jordan normal forms of a 2� 2 matrix with eigenvalues 4; 4.
In total, that makes 3 � 2=6 possibilities.

Comment. Let p(n) be the number of inequivalent Jordan normal forms of an n � n matrix with a single
eigenvalue, n times repeated. We have seen that p(2) = 2, p(3) = 3, p(4) = 5. Note that p(n) is equal
to the number of ways of writing n as an ordered sum of positive integers: for instance, p(4) = 5 because
4=3+1=2+2=2+1+1=1+1+1+1.
p(n) is referred to as the partition function and, surprisingly, is a remarkably interesting mathematical object.
https://en.wikipedia.org/wiki/Partition_function_(number_theory)
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Example 144. (summary of small cases)

(a) There are 2 possible Jordan normal forms of a 2� 2 matrix with eigenvalues �; �.

Namely.
�
�

�

�
,
�
� 1

�

�

(b) There are 3 possible Jordan normal forms of a 3� 3 matrix with eigenvalues �; �; �.

Namely.

24 �
�

�

35,
24 �

� 1
�

35,
24 � 1

� 1
�

35

(c) There are 5 possible Jordan normal forms of a 4� 4 matrix with eigenvalues �; �; �; �.

Namely.

266664
�

�
�

�

377775,
266664
�

�
� 1

�

377775,
266664
� 1

�
� 1

�

377775,
266664
�

� 1
� 1

�

377775,
266664
� 1

� 1
� 1

�

377775

Example 145. What are the possible Jordan normal forms of a 6� 6 matrix with eigenvalues 3;
3; 7; 7; 7; 7?
Solution. There are 2 � 5= 10 possible Jordan normal forms for such a matrix:26666666666664
3
3
7
7
7
7

37777777777775,
26666666666664
3
3
7 1
7
7
7

37777777777775,
26666666666664
3
3
7 1
7
7 1
7

37777777777775,
26666666666664
3
3
7 1
7 1
7
7

37777777777775,
26666666666664
3
3
7 1
7 1
7 1
7

37777777777775,
26666666666664
3 1
3
7
7
7
7

37777777777775,
26666666666664
3 1
3
7 1
7
7
7

37777777777775,
26666666666664
3 1
3
7 1
7
7 1
7

37777777777775,
26666666666664
3 1
3
7 1
7 1
7
7

37777777777775,
26666666666664
3 1
3
7 1
7 1
7 1
7

37777777777775

Example 146. How many different Jordan normal forms are there in the following cases?

(a) A 8� 8 matrix with eigenvalues 1; 1; 2; 2; 2; 4; 4; 4?

(b) A 11� 11 matrix with eigenvalues 1; 1; 1; 2; 2; 2; 2; 4; 4; 4; 4?

Solution.

(a) 2 � 3 � 3= 18 possible Jordan normal forms

(b) 3 � 5 � 5= 75 possible Jordan normal forms
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Sketch of Lecture 26 Wed, 3/20/2024

Review.

� Let A be n�n. The matrix exponential is

eA= I +A+ 1
2!
A2+ 1

3!
A3+ ���

Then, d

dt
eAt=AeAt.

Why? d

dt
eAt=

d

dt

�
I +At+

1

2!
A2t2+

1

3!
A3t3+ ���

�
=A+

1

1!
A2t+

1

2!
A3t2+ ���=AeAt

� If A=PDP¡1, then eA=PeDP¡1.

� The solution to y 0=Ay, y(0)= y0 is y(t)= eAty0:

Why? Because y0(t)=AeAty0=Ay(t) and y(0)= e0Ay0= y0:

Example 147. The matrix exponential shares many other properties of the usual exponential:

� eAeB= eA+B= eBeA if AB=BA
Why the condition AB=BA? By the Taylor series, eA+B= I +(A+B)+

(A+B)2

2!
+ ::: In order

to simplify that to

eAeB=

�
I +A+

A2

2!
+ :::

��
I +B+

B2

2!
+ :::

�
;

we need that (A+B)2=A2+AB+BA+B2 is the same as A2+2AB+B2. That's only the case
if AB=BA.

� eA is invertible and (eA)¡1= e¡A

Why? That actually follows from the previous property.

Example 148. Compute eAt for A=
�
0 1
0

�
.

Solution. Note that A2=
�
0 0
0 0

�
. Hence, eAt= I +At+

t2

2!
A2+ :::= I +At=

�
1 t
1

�
.

Example 149. Compute eAt for A=
24 0 1 0

0 1
0

35.
Solution. Note that A2=

24 0 0 1
0 0
0

35 and A3=
24 0 0 0

0 0
0

35.
Hence, eAt= I+At+

t2

2!
A2+

t3

3!
A3+ :::= I+At+

1

2
A2t2=

24 1
1
1

35+
24 0 t 0

0 t
0

35+ 1

2

24 0 0 t2

0 0
0

35=
2664 1 t

t2

2
1 t

1

3775.

Example 150. Compute eAt for A=
�
2 1
2

�
.

Solution.

� Write A=
�
2 1
2

�
=2I +N with N =

�
0 1
0

�
. Note that 2I and N commute.

Hence, eAt= e2It+Nt= e2IteNt.

� Note that N2=
�
0 0
0 0

�
. Hence, eNt= I +Nt+

t2

2!
N2+ :::= I +Nt=

�
1 t
1

�
.

� Combined, eAt= e2It+Nt= e2IteNt=

"
e2t

e2t

#�
1 t
1

�
=

"
e2t te2t

e2t

#
.

Advanced. Can you show that An=
"
2n n2n¡1

2n

#
?
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Example 151. Solve the differential equation

y 0=
�
2 1
2

�
A

y ; y(0)=
�
¡1
1

�
y0

Solution. Repeating the work in the previous example, the solution to the differential equation is

y(t) = eAty0

= e2It+Nty0 with N =

�
0 1
0 0

�
= e2IteNty0 (because 2It and Nt commute)

=

"
e2t

e2t

#�
1+Nt+

1
2
(Nt)2+

1
3!
(Nt)3+ :::

�
y0

=

"
e2t

e2t

#
(1+Nt)y0 (because N2=0)

=

"
e2t

e2t

#�
1 t
1

��
¡1
1

�
=

"
e2t

e2t

#�
t¡ 1
1

�
=

"
(t¡ 1)e2t

e2t

#
:

Check. We should verify that y1=(t¡ 1)e2t and y2= e2t satisfy y1
0 =2y1+ y2 and y2

0 =2y2.
Indeed, y1

0 = e2t+(t¡ 1)2e2t equals 2y1+ y2=2(t¡ 1)e2t+ e2t.

Comment. For applications, having solutions like te�t or t cos(�t) (when the eigenvalues are imaginary) is
connected to the phenomenon of resonance, which you may have already seen.
Important comment. Note that we can immediately see from the solution that the original matrix A is not
diagonalizable: there is a term te2t, whereas in the diagonalizable case we would only see exponentials like e2t

by themselves.
In our upcoming discussion of complex numbers we will see that e2it (here, 2i would be the eigenvalue) can be
rewritten in terms of cos(2t) and sin(2t). Both of these are periodic and bounded, so that the same is true for
every linear combination.
In that case, if the eigenvalue 2i was repeated in such a way that the matrixA is not diagonalizable, then we would
get the functions t cos(2t) and t sin(2t) in our solutions. These, however, are not bounded! This phenomenon
(getting solutions that are unbounded under the right/wrong circumstances) is called resonance.
https://en.wikipedia.org/wiki/Resonance

Understanding when resonance occurs is of crucial importance for practical applications.
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Sketch of Lecture 27 Fri, 3/22/2024

Example 152. Solve the IVP y 0=
�
0 1
1 0

�
y with y(0)=

�
1
0

�
.

Solution. Recall that the solution to y0=Ay, y(0)= y0 is y= eAty0.

� We first diagonalize A=
�
0 1
1 0

�
.

�
�������� ¡� 1
1 ¡�

��������=�2¡ 1, so the eigenvalues are �1.

� The 1-eigenspace null
��
¡1 1
1 ¡1

��
has basis

�
1
1

�
.

� The ¡1-eigenspace null
��

1 1
1 1

��
has basis

�
¡1
1

�
.

� Hence, A=PDP¡1 with P =
�
1 ¡1
1 1

�
and D=

�
1 0
0 ¡1

�
.

� Compute the solution y= eAty0:

y= eAty0 = PeDtP¡1y0

=

�
1 ¡1
1 1

�"
et 0

0 e¡t

#
=

"
et ¡e¡t

et e¡t

#

1
2

�
1 1
¡1 1

��
1
0

�
=

1
2

�
1
¡1

�
=
1
2

"
et+ e¡t

et¡ e¡t

#

Check. Indeed, y1=
1

2
(et+ e¡t) and y2=

1

2
(et¡ e¡t) satisfy the system of differential equations y1

0 = y2 and
y2
0 = y1 as well as the initial conditions y1(0)=1, y2(0)=0.

Comment. You have actually met these functions in Calculus! y1= cosh(t) and y2= sinh(t). Check out the
next example for the connection to cos(t) and sin(t).

Example 153.

(a) Solve the IVP y 0=
�
0 ¡1
1 0

�
y with y(0)=

�
1
0

�
.

(b) Show that y=
�
cos(t)
sin(t)

�
solves the same IVP. What do you conclude?

Solution.

(a) A=PDP¡1 with P =
�
i ¡i
1 1

�
, D=

�
i 0
0 ¡i

�
.

The system is therefore solved by:

y(t) = PeDtP¡1
�
1
0

�
=

�
i ¡i
1 1

�"
eit

e¡it

#
1
2i

�
1 i
¡1 i

��
1
0

�
=

1
2i

�
i ¡i
1 1

�"
eit

e¡it

#�
1
¡1

�
=
1
2i

�
i ¡i
1 1

�"
eit

¡e¡it

#
=
1
2i

"
ieit+ ie¡it

eit¡ e¡it

#

=
1
2

"
eit+ e¡it

¡ieit+ ie¡it

#

(b) Clearly, y(0)=
�
cos(0)
sin(0)

�
=
�
1
0

�
. On the other hand, y1

0 =¡sin(t) =¡y2 and y20 = cos(t) = y1, so that

y0=
�
0 ¡1
1 0

�
y. Since the solution to the IVP is unique, it follows that

�
cos(t)
sin(t)

�
=
1

2

"
eit+ e¡it

¡ieit+ ie¡it

#
.

We have just discovered Euler's identity!
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Theorem 154. (Euler's identity) ei�= cos(�)+ i sin(�)

Another short proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Rotation matrices

Example 155. Write down a 2� 2 matrix Q for rotation by angle � in the plane.
Comment. Why should we even be able to represent something like rotation by a matrix? Meaning that Qx
should be the vector x rotated by �. Recall from Linear Algebra I that every linear map can be represented by
a matrix. Then think about why rotation is a linear map.

Solution. We can determine Q by figuring out Q
�
1
0

�
(the first column of Q) and Q

�
0
1

�
(the second column

of Q).

Since Q
�
1
0

�
=
�
cos�
sin�

�
and Q

�
0
1

�
=
�
¡sin�
cos�

�
, we conclude that Q=

�
cos� ¡sin�
sin� cos�

�
.

Comment. Note that we don't need previous knowledge of cos and sin. We could have introduced these trig
functions on the spot.
Comment. Note that it is geometrically obvious that Q is orthogonal. (Why?)

It is clear that
� cos �

sin �

�2=1. Noting that
� cos �

sin �

�2= cos2�+ sin2�, we have rediscovered Pythagoras.

Advanced comment. Actually, every orthogonal 2� 2 matrix Q with det(Q) = 1 is a rotation by some angle
�. Orthogonal matrices with det(Q)=¡1 are reflections.

Example 156. As in the previous example, let Q� be the 2� 2 matrix for rotation by angle � in
the plane. What is Q�Q�?

Solution. Note that Q�Q�x first rotates x by angle � and then by angle �. For geometric reasons, it is obvious
that this is the same as if we rotated x by �+ �. It follows that Q�Q�=Q�+�.
Comment. This allows us to derive interesting trig identities:

Q�Q� =

�
cos� ¡sin�
sin� cos�

��
cos� ¡sin�
sin� cos�

�
=

�
cos�cos� ¡ sin�sin� :::

::: :::

�
Q�+� =

�
cos(�+ �) ¡sin(�+ �)
sin(�+ �) cos(�+ �)

�
It follows that cos(�+ �)= cos�cos� ¡ sin�sin�.
Comment. If we set �=�, this simplifies to cos(2�)= cos2�¡ sin2�=2cos2�¡ 1, the double angle formula
that you have probably used countless times in Calculus.
Comment. Similarly, we find an identity for sin(�+ �). Spell it out!

More on complex numbers

Let's recall some very basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=¡1.
Important observation. The same equation is solved by ¡i. This means that, algebraically, we cannot
distinguish between +i and ¡i.

� The conjugate of z=x+ iy is z�=x¡ iy.
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Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x¡ iy has to show up in the same manner. With that in
mind, have another look at Example 89.

� The absolute value of the complex number z=x+ iy is jz j= x2+ y2
p

= z�z
p

.

� The norm of the complex vector z=
�
z1
z2

�
is kzk= jz1j2+ jz2j2

p
.

Note that kzk2= z1� z1+ z2� z2= z�Tz.

Definition 157.

� For every matrix A, its conjugate transpose is A�=(A�)T .

� The dot product (inner product) of complex vectors is v �w=v�w.

� A complex n�n matrix A is unitary if A�A= I.

Comment. A� is also written AH (or Ay in quantum mechanics) and called the Hermitian conjugate.
Comment. For real matrices and vectors, the conjugate transpose is just the ordinary transpose. In particular,
the dot product is the same.
Comment. Unitary matrices are the complex version of orthogonal matrices. (A real matrix if unitary if and only
if it is orthogonal.)

Example 158. What is the norm of the vector
�
1¡ i
2+ 3i

�
?

Solution.
� 1¡ i

2+3i

�2= [ 1 + i 2¡ 3i ]
�
1¡ i
2+ 3i

�
= j1¡ ij2+ j2+3ij2=2+ 13. Hence,

� 1¡ i
2+3i

�= 15
p

.

Example 159. Determine A� if A=
�

2 1¡ i
3+ 2i i

�
.

Solution. A�=
�

2 3¡ 2i
1+ i ¡i

�

Example 160. What is 1

2+ 3i
?

Solution. 1

2+3i
=

2¡ 3i
(2+ 3i)(2¡ 3i) =

2¡ 3i
13

.

In general. 1

z
=

z�

z z�
=

z�

jzj2
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Sketch of Lecture 28 Mon, 3/25/2024

Example 161. (extra) We can identify complex numbers x+ iy with vectors
�
x
y

�
in R2. Then,

what is the geometric effect of multiplying with i?

Solution. Algebraically, the effect of multiplying x+ iy with i obviously is i(x+ iy)=¡y+ ix.

Since multiplication with i is obviously linear, we can represent it using a 2� 2 matrix J acting on vectors
�
x
y

�
.

J
�
1
0

�
=
�
0
1

�
(this is the same as saying i � 1= i) and J

�
0
1

�
=
�
¡1
0

�
(this is the same as saying i � i=¡1).

Hence, J =
�
0 ¡1
1 0

�
. This is precisely the rotation matrix for a rotation by 90�.

In other words, multiplication with i has the geometric effect of rotating complex numbers by 90�.
Comment. The relation i2=¡1 translates to J2=¡I.
Complex numbers as 2� 2 matrices. In light of the above, we can express complex numbers x+ iy as the
2�2 matrix xI+ yJ=

�
x ¡y
y x

�
. Adding and multiplying these matrices behaves exactly the same way as adding

or multiplying the complex numbers directly.

For instance, (2+ 3i)(4¡ i)= 8+ 10i¡ 3i2= 11+ 10i versus
�
2 ¡3
3 2

��
4 1
¡1 4

�
=
�
11 ¡10
10 11

�
.

Likewise for inverses: 1

2+ 3i
=

2¡ 3i
(2+ 3i)(2¡ 3i) =

2¡ 3i
13

versus
�
2 ¡3
3 2

�¡1
=

1

13

�
2 3
¡3 2

�

Extra: More details on the spectral theorem

Let us add hv;wi to our notations for the dot product: hv ;wi=vTw=v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2¡kv¡wk2). See Example 28.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A=AT) are of interest.
For every matrix A, hAv;wi= hv; ATwi.
It follows that, a matrix A is symmetric if and only if hAv;wi= hv; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv; Qwi= hv;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv;wi for all vectors v;w.
Comment. We observed in Example 155 that orthogonal matrices Q correspond to rotations (detQ=1)
or reflections (detQ=¡1) [or products thereof]. The equality hQv; Qwi= hv;wi encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDP T , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.
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Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A = PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows from AT =(PDPT)T =(PT )TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

We already proved the first part in Theorem 94 using the same argument and only slightly different notation.

Theorem 162.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then hv;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v;wi= hAv;wi= hv; ATwi= hv; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v�Tv= 0. But v�Tv= v�v= kvk2=/ 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue.
Alternative proof. Note that a complex number � is real if and only if �� = �. Suppose that � is an
eigenvalue with nonzero eigenvector v so that Av=�v. We now observe that �v�v=v�(�v)=v�Av=
v�A�v= (Av)�v= (�v)�v= ��v�v. Dividing by kvk2= v�v (which is not zero!) we find �= �� from
which we conclude that � is real. �

Advanced comment. Note that the alternative proof of the second part shows that any Hermitian matrixA (that
is, a complex matrix A such that A�=A) has only real eigenvalues. If A is Hermitian, what can we conclude
about the eigenspaces if we follow the argument in the first part?

Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 89. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +i and ¡i.
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Sketch of Lecture 29 Mon, 4/1/2024

Singular value decomposition

(Singular value decomposition)
Every m�n matrix A can be decomposed as A=U�V T , where

� � is a (rectangular) diagonal matrix with nonnegative entries, (m�n)

The diagonal entries �i are called the singular values of A.

� U is orthogonal, (m�m)

� V is orthogonal. (n�n)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral theorem
(the diagonalization of A). Moreover, in that case, V =U .
Important observations. If A=U�V T , then ATA=V �T�V T .

� Note that �T� is an n�n diagonal matrix. Its entries are �i
2 (the squares of the entries in �).

� ATA is a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to find V and �T�.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of ATA. Likewise, the entries of
�T� are the eigenvalues of ATA; their square roots are the entries of �, the singular values.
Finally, the equation AV =U� allows us to determine U . How?! (Hint: Avi=�iui)

This results in the following recipe to determine the SVD A=U�V T for any matrix A.
Find an orthonormal basis of eigenvectors vi of ATA. Let �i be the eigenvalue of vi.

� V is the matrix with columns vi.

� � is the diagonal matrix with entries �i= �i
p

.

� U is the matrix with columns ui=
1

�i
Avi. If needed, fill in additional columns to make U orthogonal.

Example 163. Determine the SVD of A=
�

2 2
¡1 1

�
.

Solution. ATA=
�
5 3
3 5

�
has 8-eigenvector

�
1
1

�
and 2-eigenvector

�
¡1
1

�
.

Since ATA=V �2V T (here, �T�=�2), we conclude that V =
1

2
p

�
1 ¡1
1 1

�
and �=

"
8

p

2
p

#
.

From Avi=�iui, we find u1=
1

�1
Av1=

1

8
p

�
2 2
¡1 1

�
1

2
p

�
1
1

�
=
�
1
0

�
.

Likewise, u2=
1

�2
Av2=

1

2
p

�
2 2
¡1 1

�
1

2
p

�
¡1
1

�
=
�
0
1

�
. Hence, U =

�
1 0
0 1

�
. Check that, indeed, A=U�V T !

Comment. For applications, it is common to arrange the singular values in decreasing order like we did.

Comment. If we had chosen V =
1

2
p

�
¡1 ¡1
¡1 1

�
instead, then U =

�
¡1 0
0 1

�
and �=

"
8

p

2
p

#
.

As with diagonalization, there are choices! (A lot fewer choices though.) This is another perfectly fine SVD. In
fact, it's what Sage computes below.
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Sage. Let's have Sage do the work for us. In Sage, the SVD is currently only implemented for
floating point numbers. (RDF is the real numbers as floating point numbers with double precision)

Sage] A = matrix(RDF, [[2,2],[-1,1]])

Sage] U,S,V = A.SVD()

Sage] U"
¡1.0 1.11022302463� 10¡16

8.64109131471� 10¡17 1.0

#

Sage] S�
2.82842712475 0.0

0.0 1.41421356237

�
Sage] V�

¡0.707106781187 ¡0.707106781187
¡0.707106781187 0.707106781187

�

Remark 164. (April Fools' Day!) � is the perimeter of a circle
enclosed in a square with edge length 1. The perimeter of the square
is 4, which approximates �. To get a better approximation, we �fold�
the vertices of the square towards the circle (and get the blue polygon).
This construction can be repeated for even better approximations and,
in the limit, our shape will converge to the true circle. At each step, the
perimeter is 4, so we conclude that �=4, contrary to popular belief.

Can you pin-point the fallacy in this argument?
Comment. We'll actually come back to this. It's related to linear algebra in
infinite dimensions.
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Sketch of Lecture 30 Wed, 4/3/2024

Review. SVD

Example 165. Determine the SVD of A=
�
2 2
1 1

�
.

Comment. In contrast to our previous example, rank(A)= 1. It follows that ATA has eigenvalue 0, so that 0
is a singular value of A.

Solution. ATA=
�
5 5
5 5

�
has 10-eigenvector

�
1
1

�
and 0-eigenvector

�
¡1
1

�
.

We conclude that V =
1

2
p

�
1 ¡1
1 1

�
and �=

"
10

p

0

#
.

u1=
1

�1
Av1=

1

10
p

�
2 2
1 1

�
1

2
p

�
1
1

�
=

1

20
p

�
4
2

�
=

1

5
p

�
2
1

�
We cannot obtain u2 in the same way because �2=0. Since for every vector u2, Av2=�2u2, we can choose
u2 as we wish, as long as the columns of U are orthonormal in the end.

u2=
1

5
p

�
¡1
2

�
(but u2=

1

5
p

�
1
¡2

�
works just as well)

Hence, U =
1

5
p

�
2 ¡1
1 2

�
.

In summary, A=U�V T with U =
1

5
p

�
2 ¡1
1 2

�
, �=

"
10

p

0

#
, V =

1

2
p

�
1 ¡1
1 1

�
.

Check. Do check that, indeed, A=U�V T .

Example 166. Determine the SVD of A=
24 1 ¡1
0 1
1 0

35.
Solution. ATA=

�
2 ¡1
¡1 2

�
has 3-eigenvector

�
¡1
1

�
and 1-eigenvector

�
1
1

�
.

Since ATA=V �T�V T , we conclude that V =
1

2
p

�
¡1 1
1 1

�
and �=

2664 3
p

0
0 1
0 0

3775.
u1=

1

�1
Av1=

1

3
p

24 1 ¡1
0 1
1 0

35 1

2
p

�
¡1
1

�
=

1

6
p

24 ¡21
¡1

35
u2=

1

�2
Av2=

1

1

24 1 ¡1
0 1
1 0

35 1

2
p

�
1
1

�
=

1

2
p

24 0
1
1

35
u3 is chosen so that the matrix U is orthogonal. Hence, u3=

1

3
p

24 ¡1¡1
1

35 (or u3= 1

3
p

24 1
1
¡1

35).
Hence, U =

2664 ¡2/ 6
p

0 ¡1/ 3
p

1/ 6
p

1/ 2
p

¡1/ 3
p

¡1/ 6
p

1/ 2
p

1/ 3
p

3775.

In summary, A=U�V T with U =

2664 ¡2/ 6
p

0 ¡1/ 3
p

1/ 6
p

1/ 2
p

¡1/ 3
p

¡1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
¡1 1
1 1

�
.

How did we find u3? We already have the vectors u1 and u2, and need a vector orthogonal to both.

That is, we need to find the vector spanning span

(24 ¡21
¡1

35;
24 0
1
1

35
)?

= col

 24 ¡2 0
1 1
¡1 1

35
!?

=null
��
¡2 1 ¡1
0 1 1

��
.

[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to
both u1 and u2?]
More generally, proceeding like this, we can always fill in �missing� vectors ui to obtain an orthonormal basis
u1;u2; :::;um that we can use as the columns of U .
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Sketch of Lecture 31 Fri, 4/5/2024

Example 167. Determine the SVD of A=
�
1 1
0 1

�
.

Solution. ATA=
�
1 1
1 2

�
has characteristic polynomial (1¡�)(2¡�)¡ 1=�2¡ 3�+1.

The eigenvalues of ATA are �1;2=
3� 5

p

2
.

3+ 5
p

2
-eigenvector

"
2

1+ 5
p

#
and 3¡ 5

p

2
-eigenvector

"
2

1¡ 5
p

#
.

It would be rather painful to continue with exact expressions, and that is not how applications typically proceed.
Numerically:

� 2.618-eigenvector
�
0.526
0.851

�
and 0.382-eigenvector

�
¡0.851
0.526

�
. These eigenvectors are normalized, and it

is now actually immediately obvious that they are orthogonal. (Of course, they had to be!)

� Hence, �=
"

2.618
p

0.382
p

#
=
�
1.618

0.618

�
and V =

�
0.526 ¡0.851
0.851 0.526

�
.

[We chose
�
¡0.851
0.526

�
instead of

�
0.851
¡0.526

�
, so that, for the resulting V , detV =+1.]

� u1=
1

�1
Av1=

1

1.618

�
1 1
0 1

��
0.526
0.851

�
=
�
0.851
0.526

�
u2=

1

�2
Av1=

1

0.618

�
1 1
0 1

��
¡0.851
0.526

�
=
�
¡0.526
0.851

�
.

Hence, U =
�
0.851 ¡0.526
0.526 0.851

�
. (Again, notice the obvious orthogonality!)

Comment. The matrix A itself has eigenvalues 1;1, but the 1-eigenspace is only 1-dimensional. We are missing
an eigenvector, which renders A not diagonalizable.

Comment. If we had continued symbolically, there are some magical simplifications like 3+ 5
p

2

r
=

1+ 5
p

2

going on. By the way, this is the golden ratio!

Sage. In Sage, the SVD is currently only implemented for floating point numbers (RDF is the real numbers as
floating point numbers with double precision). Here's our computation:

Sage] A = matrix(RDF, [[1,1],[0,1]])

Sage] U,S,V = A.SVD()

Sage] U�
0.850650808352 ¡0.525731112119
0.525731112119 0.850650808352

�
Sage] S�

1.61803398875 0.0
0.0 0.61803398875

�
Sage] V�

0.525731112119 ¡0.850650808352
0.850650808352 0.525731112119

�
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Example 168. (continued) The matrices U and V are rotation matrices. By what angle?

Why rotations? Recall that orthogonal matrices have determinant +1 or ¡1.
Since detU =+1 and detV =+1, the orthogonal matrices U ; V are rotations.

Solution. Being rotation matrices, each of them equals
�
cos� ¡sin�
sin� cos�

�
for some angle �.

To find the angle �V for V , we compute arccos(0.526)=1.017. This means that �V =1.017 or �V =2�¡1.017
(make a sketch of cos(�) if that's unclear!). Since sin(1.017)=0.851 (whereas sin(2�¡1.017)=¡0.851), we
conclude that V is a rotation by �V = 1.017= 58.3�. Keep that angle in mind for the next example!
Likewise, U is a rotation by �U = 0.554= 31.7�.

Comment. The two angles add up to 90�. That's a consequence of the (atypical) fact that the matrices U and
V have essentially the same entries.

Example 169. Explain the geometric meaning of the SVD in the previous example.

� The map x 7! Ax with A =
�
1 1
0 1

�
sends the (orthogonal) grid spanned by

�
1
0

�
and

�
0
1

�
to the

(nonorthogonal) grid spanned by A
�
1
0

�
=
�
1
0

�
and A

�
0
1

�
=
�
1
1

�
.

Make a sketch! The two grids are overlayed in the first plot on the next page.

� Likewise, for instance, the (orthogonal) grid spanned by 1

2
p

�
1
1

�
and 1

2
p

�
¡1
1

�
(the 45� degree rotated

version of the previous grid) is sent to the (again, nonorthogonal) grid spanned by 1

2
p

�
2
1

�
and 1

2
p

�
0
1

�
.

Make a sketch! The two grids are overlayed in the second plot on the next page.

� Can we find an orthogonal grid which is sent to another orthogonal grid by A?
Solution. Yes! The SVD A=U�V T is equivalent to AV =U�. That is, Avi=�iui.
In other words, the orthogonal grid spanned by v1; v2 is sent to the orthogonal grid spanned by �1u1;
�2u2. As we observed earlier, the grid spanned by v1; v2 is the 58.3� degree rotated version of the
standard grid)
While the input grid consists of little squares, the output grid consists of rectangles with sides �1; �2.
Make a sketch! The two grids are overlayed in the third plot on the next page.

The following Sage code prepares the plots on the next page. Even if you have no coding background, can you
see, roughly, what is happening?

Sage] def grid_lines(v1, v2, n, args={}):
lines = Graphics()
for i in [-n..n]:

lines += line([i*v1-n*v2, i*v1+n*v2], color='red', **args)
lines += line([i*v2-n*v1, i*v2+n*v1], color='blue', **args)

return lines

Sage] def svd_rotate(angle):
A = matrix([[1,1],[0,1]])
t = angle*2*pi/360
R = matrix([[cos(t),-sin(t)],[sin(t),cos(t)]])
G1 = grid_lines(R*vector([1,0]), R*vector([0,1]), 2, {'linestyle':':'})
G2 = grid_lines(A*R*vector([1,0]), A*R*vector([0,1]), 2, {'linestyle':'--'})
B = polygon([(-5,-5), (-5,5), (5,5), (5,-5)], fill=False)
O = point((0,0), pointsize=30,color='black')
return B+O+G1+G2
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Grid spanned by
�
1
0

�
and

�
0
1

�
(dotted), and grid

spanned by
�
1
0

�
and

�
1
1

�
(dashed):

Sage] svd_rotate(angle = 0)
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�
¡1
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(dotted), and

grid spanned by 1

2
p

�
2
1

�
and 1

2
p

�
0
1

�
(dashed):

Sage] svd_rotate(angle = 45)
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Finally, here is the special situation (given by the SVD!) which shows an orthogonal grid (rotated
by 58.3� degree) that is sent to another orthogonal grid (rotated by 31.7� degree):

Sage] svd_rotate(angle = 58.3)

-4 -2 2 4

-4

-2

2

4

For more pictures and detailed comments see the beautiful article:

http://www.ams.org/samplings/feature-column/fcarc-svd
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Sketch of Lecture 32 Mon, 4/8/2024

Example 170. Show that the eigenvalues of ATA are all nonnegative.

Proof. Suppose that � is an eigenvalue of ATA. Then ATAv=�v (where v is a �-eigenvector).

It follows that vTATAv
=kAvk2>0

=�vTv=�kvk2. Finally, �kvk2>0 implies that �>0. �

The pseudoinverse of an m�n matrix A is the matrix A+ such that the system Ax= b has
�optimal� solution x=A+b.

Here, �optimal� means that x is the smallest least squares solution.
In particular:

� If Ax= b has a unique solution, then x=A+b is that solution.

� If Ax= b has many solutions, then x=A+b is the one of smallest norm (the �optimal� one; and there
is indeed only one such optimal solution).

� If Ax = b is inconsistent but has a unique least squares solution, then x = A+b is that least squares
solution.

� If Ax= b has many least squares solutions, then x=A+b is the one with smallest norm.

When there is a unique (least squares) solution, we know how to find the pseudoinverse:

� If A is invertible, then A+=A¡1.

� If A has full column rank, then A+=(ATA)¡1AT .
Recall. If Ax= b is inconsistent, a least squares solution can be determined by solving ATAx=ATb.
If A has full column rank (i.e. the columns of A are independent; in this context, the typical case), then
x=(ATA)¡1ATb is the unique least squares solution to Ax=b.

Example 171.

(a) What is the pseudoinverse of �=
24 2 0
0 3
0 0

35?

(b) What is the pseudoinverse of �=
�
2 0 0
0 3 0

�
?

(c) What is the pseudoinverse of �=
�
2 0 0
0 0 0

�
?

(d) In each case, compute �+� and ��+.

Armin Straub
straub@southalabama.edu

80



Solution.

(a) Recall that, if A has full column rank, then A+=(ATA)¡1AT .

Here, �T�=
�
4 0
0 9

�
, so that �+=(�T�)¡1�T =

�
1/4

1/9

��
2 0 0
0 3 0

�
=
�
1/2 0 0
0 1/3 0

�
.

Alternative. Let us think about the optimal solution to �x=b, that is,

24 2 0
0 3
0 0

35� x1
x2

�
=

24 b1
b2
b3

35.
The (unique) least squares solution is x=

�
b1/2
b2/3

�
. (Review if this is not obvious!)

Since
�
b1/2
b2/3

�
=
�
1/2 0 0
0 1/3 0

�
b, we conclude that �+=

�
1/2 0 0
0 1/3 0

�
.

(b) Let us think about the smallest norm (�optimal�) solution to �x= b, that is,
�
2 0 0
0 3 0

�24 x1
x2
x3

35=� b1
b2

�
.

The general solution is x=

24 b1/2
b2/3
t

35, where t is a free parameter.

Clearly, the smallest norm solution is

24 b1/2
b2/3
0

35.
Since

24 b1/2
b2/3
0

35=
24 1/2 0

0 1/3
0 0

35b, we conclude that �+=
24 1/2 0

0 1/3
0 0

35.
(c) Now, �x= b, that is,

�
2 0 0
0 0 0

�24 x1
x2
x3

35=�
b1
b2

�
has no solution (unless b2=0).

We therefore need to think about least squares solutions.

The general least squares solution (why?!) is x=

24 b1/2
s
t

35, where s; t are free parameters.

Clearly, the smallest norm least squares solution is

24 b1/2
0
0

35.
Since

24 b1/2
0
0

35=
24 1/2 0

0 0
0 0

35b, we conclude that �+=
24 1/2 0

0 0
0 0

35.

(d) Firstly, �+�=
�
1/2 0 0
0 1/3 0

�24 2 0
0 3
0 0

35=�
1 0
0 1

�
and ��+=

24 2 0
0 3
0 0

35� 1/2 0 0
0 1/3 0

�
=

24 1 0 0
0 1 0
0 0 0

35.
Secondly, �+�=

24 1/2 0
0 1/3
0 0

35� 2 0 0
0 3 0

�
=

24 1 0 0
0 1 0
0 0 0

35 and ��+=� 2 0 0
0 3 0

�24 1/2 0
0 1/3
0 0

35=�
1 0
0 1

�
.

[Note how the pseudoinverse tries to behave like the regular inverse. But since � has only 2 columns,
�+� and ��+ can have rank at most 2 (so cannot be the full 3� 3 identity).]

Thirdly, �+�=

24 1/2 0
0 0
0 0

35� 2 0 0
0 0 0

�
=

24 1 0 0
0 0 0
0 0 0

35 and ��+=� 2 0 0
0 0 0

�24 1/2 0
0 0
0 0

35=� 1 0
0 0

�
.

[Here, � has rank 1, so that �+� and ��+ can have rank at most 1.]

In general. Proceeding, as in this example, we find that the pseudoinverse of any m� n diagonal matrix � is
the n�m (transposed dimensions!) diagonal matrix whose nonzero entries are the inverses of the entries of �.
Comment. Observe that, in all three cases, �++=�.

Comment. Note that
�
1 0
0 "

�+
=

"
1 0

0 "¡1

#
for small " =/ 0, while

�
1 0
0 0

�+
=
�
1 0
0 0

�
. This shows that the

pseudoinverse is not a continuous operation.
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It turns out that the pseudoinverse A+ can be easily obtained from the SVD of A:

Theorem 172. The pseudoinverse of an m�n matrix A with SVD A=U�V T is

A+=V �+UT ;

where �+, the pseudoinverse of �, is the n�m diagonal matrix, whose nonzero entries are the
inverses of the entries of �.

Proof. The equation Ax=b is equivalent to U�V Tx= b and, thus, �V Tx=UTb.

Write y=V Tx and note that y and x have the same norm (why?!).
We already know that the equation �y=UTb has optimal solution y=�+UTb.

Since y and x have the same norm, it follows that x=Vy=V �+UTb is the optimal solution to Ax= b.
Hence, A+=V �+UT . �

Lemma 173. The pseudoinverse of A+ is A++=A.
Proof. Starting with the SVD A=U�V T , we have A+=V �+UT , which is the SVD of A+.
Therefore, A++=U�++V T . The claim thus follows from �++=�. �

Example 174. Determine the pseudoinverse of A=
24 1 ¡1
0 1
1 0

35 in two ways.

First, using the SVD and, second, using the fact that A has full column rank.
Solution. (SVD) We have computed the SVD of this matrix before.

Since A=U�V T with U =

2664 ¡2/ 6
p

0 ¡1/ 3
p

1/ 6
p

1/ 2
p

¡1/ 3
p

¡1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
¡1 1
1 1

�
,

the pseudoinverse is A+=V �+UT where �+=
"
1/ 3
p

0 0
0 1 0

#
.

Multiplying these matrices, A+= 1

3

�
1 1 2
¡1 2 1

�
.

Comment. For many applications, it may be neither necessary nor helpful to multiply V ;�+; UT .

Solution. (full column rank) Since A clearly has full column rank, we also have A+=(ATA)¡1AT .

Indeed, A+=(ATA)¡1AT =
�

2 ¡1
¡1 2

�¡1� 1 0 1
¡1 1 0

�
=
1

3

�
2 1
1 2

��
1 0 1
¡1 1 0

�
=
1

3

�
1 1 2
¡1 2 1

�
.

Example 175. What is the pseudoinverse of A=
�
2 2
1 1

�
?

Solution. Recall (or compute) that A=U�V T with U =
1

5
p

�
2 ¡1
1 2

�
, �=

"
10

p

0

#
, V =

1

2
p

�
1 ¡1
1 1

�
.

Hence, A+=V �+UT where �+=
"
1/ 10
p

0
0 0

#
.

Multiplying these matrices (which may not be necessary or helpful for applications), A+= 1

10

�
2 1
2 1

�
.

Note. Since A does not have full column rank, A+=(ATA)¡1AT cannot be used. That's because ATA is not
invertible.

Comment. Here, A+A=v1v1T =
1

2

�
1 1
1 1

�
and AA+=u1u1

T =
1

5

�
4 2
2 1

�
are not visually like the identity. How-

ever, note that these are the (orthogonal) projections onto v1 and u1 respectively (in particular, the eigenvalues
are 1; 0).
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Sketch of Lecture 33 Wed, 4/10/2024

Review.

� If the m�n matrix A has SVD A=U�V T , then its pseudoinverse is A+=V �+UT .
Here, �+, the pseudoinverse of �, is the n�m diagonal matrix, whose nonzero entries are the inverses
of the entries of �.

� The system Ax= b has �optimal� solution x=A+b.
Here, �optimal� means that x is the smallest least squares solution.

Example 176.

(a) Find the pseudoinverse of A= [ 1 2 3 ].

(b) Find the smallest solution to x1+2x2+3x3=6.
As before, smallest solutions means the solution x such that kxk is as small as possible. One obvious
solution is [ 1; 1; 1 ]T , but is it the smallest?

Solution.

(a) ATA=

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35 has 14-eigenvector
24 1
2
3

35 and 0-eigenvectors
24 ¡21

0

35;
24 ¡30

1

35.
u1=

1

�1
Av1=

1

14
p [ 1 2 3 ]

1

14
p

24 1
2
3

35=1

Hence, A=U�V T with U = [ 1 ], �=
�

14
p

0 0
�
, V =

2664 1/ 14
p

� �
2/ 14
p

� �
3/ 14
p

� �

3775.

A+=V �+UT =

2664 1/ 14
p

� �
2/ 14
p

� �
3/ 14
p

� �

3775
2664 1/ 14

p

0
0

3775[ 1 ] = 1

14

24 1
2
3

35
Comment. No surprise on U . The only options for U are U = [ 1 ] and U = [ ¡1 ].
Comment. Realizing what we did here allows us to write down A+ immediately for all 1� n matrices
A. See Example 177.
Homework. Complete the SVD of A. That is, find an option for the two missing columns of V , so that
V is an orthogonal matrix. In other words, find an orthonormal basis for the 0-eigenspace.

Comment. An even better approach would be to compute AAT first (instead of ATA) which would
allow us to compute U first (rather than V first). Can you fill in the blanks?

(b) We are solving Ax= [ 6 ] with A= [ 1 2 3 ] as in the previous example.

We conclude that the smallest solution is x=A+[ 6 ] =
3
7

24 1
2
3

35.
Compare.

37
24 1
2
3

35
= 3

7
14

p
� 1.604 is indeed smaller than, say,


24 1
1
1

35
= 3

p
� 1.732.

Geometric picture. The equation x1+2x2+3x3=6 describes a plane (not through the origin), and we
are asking for the point on that plane which is closest to the origin. That's a typical question in Calculus
III. Note that [ 1 2 3 ]T is the normal vector of the plane. Explain why the answer had to be a multiple
of that normal vector!

Example 177. More generally, find the pseudoinverse of A= [ a1 a2 a3 ].

Solution. As in the previous example, we see that the answer will be A+= a

kak2 with a=

24 a1
a2
a3

35.
Comment. Likewise for A= [ a1 a2 ::: an ].
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Example 178. How is the rank of A reflected in its singular value decomposition A=U�V T?

Solution. The rank of A is equal to the number of nonzero singular values.

Theorem 179. (matrix approximation lemma) Suppose A is a m�n matrix, and we want
to approximate A using a matrix B of rank s (smaller than the rank of A).

Let A=U�V T be the SVD of A (with singular values in decreasing order).

Then, the best such approximation is B=Us�sVsT , where �s is the s� s diagonal matrix with
entries �1; �2; :::; �s and Us; Vs are obtained from U ; V by only taking the first s columns.

Comment. Note that, by choosing s small compared to r, we can store an approximation of A using much less
data. This approximation will be good if the omitted singular values �s+1; �s+2; :::; �r are all �small�.

Comment. Equivalently, B=U�sV
T , where �s is now obtained from � by setting all but the largest s singular

values to 0. In other words, �s has the values �1; �2; :::; �s on its diagonal, followed by zeros.
In other words. Here is another common way to say the same thing:

� Observe that A=U�V T is equivalent to A=
X
i=1

r

�iuivi
T .

� Each matrix uivi
T has rank 1.

� The best rank s approximation to A is B=
X
i=1

s

�iuivi
T .

Advanced comment. Here, �best� approximation is measured using the Frobenius norm of a matrix A (which
is the same as the norm of a vector with all the entries of A).

Example 180. Determine the best rank 1 approximation of A=
�
1 1 1
1 0 ¡1

�
.

Solution. We determine (do it!) that A has the SVD

A=

�
1 0
0 ¡1

�"
3

p
0 0

0 2
p

0

#2664 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775
T

=

�
1 1 1
1 0 ¡1

�
.

Hence, the best rank 1 approximation of A is (that is, we keep 1 singular value only) is�
1
0

��
3

p �2664 1/ 3
p

1/ 3
p

1/ 3
p

3775
T

=

�
1 1 1
0 0 0

�
.

Comment. Equivalently,
�
1 0
0 ¡1

�"
3

p
0 0

0 0 0

#2664 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775
T

=
�
1 1 1
0 0 0

�
.

Example 181. Determine the best rank 1 approximation of A=
24 1 ¡1
0 1
1 0

35.
Solution. Recall that A=U�V T with U =

2664 ¡2/ 6
p

0 ¡1/ 3
p

1/ 6
p

1/ 2
p

¡1/ 3
p

¡1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
¡1 1
1 1

�
.

Hence, the best rank 1 approximation of A is 1

6
p

24 ¡21
¡1

35� 3
p � 1

2
p

�
¡1
1

�T
=
1

2

24 2 ¡2
¡1 1
1 ¡1

35.
Comment. The best rank 2 approximation of A is, of course, A itself. Observe that we can delete the third
column of U and the third row of � without changing the product.
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Example 182. (image compression) Let us load a 341x512 grayscale photo and store it as a
matrix A. Each entry of the matrix is a value between 0 (black) and 1 (white).

The beautiful picture is taken from: http://www.southalabama.edu/departments/publicrelations/brand/photography.html

[The same approach works with color pictures. These are often represented by three matrices: one for the red
component of the pixel, one for the green and for the blue component (RGB color scheme).]

Sage] import pylab

Sage] A = matrix(pylab.imread('/home/armin/photo.png'))

Sage] A.dimensions()

(341; 512)

Sage] A[0,0]

0.137254908681

Sage] matrix_plot(A, cmap='gray')
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Next, we compute the SVD of A. Despite the size of A that takes the computer only a fraction of a second:

Sage] U,S,V = A.SVD()

Sage] S.diagonal()[:6]

[238.443435709; 79.4429775448; 35.4540786319; 20.5662302846; 20.0697710337; 13.3421216529]

Sage] list_plot(S.diagonal(), scale='semilogy')
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As we can see, the magnitude of the singular values drops off quickly. We get a good approximation to A (our
original photo) by computing a best rank s approximation to A by computing Us�sVs where �s is the s � s
diagonal matrix with entries �1; �2; :::; �s and Us; Vs are obtained from the corresponding matrices in the SVD
A=U�V T by only taking the first s columns.

Sage] def A_approx(s):
U0 = U.matrix_from_columns([0..s-1])
S0 = diagonal_matrix(S.diagonal()[:s])
V0 = V.matrix_from_columns([0..s-1])
return U0*S0*V0.transpose()

Taking only 100 of the 341 singular values, we get an approximation which is almost as good as the original:

Sage] matrix_plot(A_approx(100), cmap='gray')
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But notice the development of artifacts. Taking only 20 of the 341 singular values, a lot is lost:

Sage] matrix_plot(A_approx(20), cmap='gray')
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Comment. Image compression is just one (nice visual) example of the power of SVD. A variation of this approach
can, for instance, also be used for image denoising. Much more generally, the SVD is able to extract the most
important features of any sort of data!
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Sketch of Lecture 34 Fri, 4/12/2024

Review. matrix approximation and compression

Function spaces

Recall the following:

� We call objects vectors if they can be added and scaled (subject to the usual laws).

� A set of vectors is a vector space if it is closed under addition and scaling.

In other words, vector spaces are spans.

We will now discuss spaces of vectors, where the vectors are functions.

Why? Just one example why it is super useful to apply our linear algebra machinery to functions: we discussed
the distance between vectors and how to find vectors closest to interesting subspaces (i.e. orthogonal projections).
These notions are important for functions, too. For instance, given a (complicated) function, we want to find
the closest function in a subspace of (simple) functions. In other words, we want to approximate functions using
other (typically, simpler) functions.
Comment. Functions f(x) and g(x) can also be multiplied. This is an extra structure (it makes appropriate
sets of functions an algebra, which is something more special than a vector space), which we ignore during our
discussion of vector spaces.

An inner product on function spaces

On the space of, say, (piecewise) continuous functions f : [a; b]!R, it is natural to consider
the dot product

hf ; gi=
Z
a

b

f(t)g(t)dt:

Why? A (sensible) dot product provides a (sensible) notion of distance between functions. The dot product
above is the continuous analog of the usual dot product hx; yi=

P
t=1
n xtyt for vectors in Rn. Do you see it?!

As a consequence, once we have the dot product, we can orthogonally project functions onto spaces of simple
functions. In other words, we can compute best approximations of functions by simple functions (for instance,
best quadratic approximations).
Why continuous? We need that any product f(x)g(x) is integrable. That means we cannot work with all
functions. Continuity is certainly sufficient. In fact, the right condition is that f(x)2 should be integrable on
[a; b] (i.e. f(x) is square-integrable). Such a function is said to be in L2[a; b].

Example 183. What is the orthogonal projection of f : [a; b]! R onto the space of constant
functions (that is, spanf1g)?
Solution. The orthogonal projection of f : [a; b]!R onto spanf1g is

hf ; 1i
h1; 1i 1=

R
a
b
f(t)1dtR
a
b12dt

=
1

b¡ a

Z
a

b

f(t)dt:

This is the average of f(x) on [a; b].
Comment. Makes perfect sense, doesn't it? Intuitively, the best approximation of a function by a constant
should indeed be the one where the constant is the average.
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Example 184. Find the best approximation (in the L2 sense) of f(x)= x
p

on the interval [0;1]
using a function of the form y= ax.

Solution. The orthogonal projection of f : [0;1]!R onto spanfxg
is

hf ; xi
hx; xix=

R
0
1
f(t)tdtR
0
1t2dt

x=3x

Z
0

1

tf(t)dt:

In our case, the best approximation is

3x

Z
0

1

t t
p
dt=3x

Z
0

1

t3/2dt=3x

�
1
5/2

t5/2
�
0

1

=
6
5
x: 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

What does �in the L2 sense� mean? There are various ways to make precise what �best approximation� should
mean. Here, we mean that the norm of the error gets minimized: since the error is error(t)= t

p
¡at, this means

that

kerrork2= herror; errori=
Z
0

1

error(t)2dt=
Z
0

1

( t
p
¡ at)2dt

is minimized over all choices for a (note that it does not make a difference whether we are minimizing the norm or
the square of the norm). Since the above norm is known as the L2 norm, we are finding the best approximation
�in the L2 sense�. For instance, an alternative meaningful norm is the L1 norm, for which kerrork simply
measures the maximum absolute value of the error (this may sound simpler but there is no corresponding notion
of orthogonality so that we cannot apply tools like orthogonal projections).

For comparison. Let's minimize r(a) := kerrork2 directly! First, we compute that

r(a)=

Z
0

1

( t
p
¡ at)2dt=

Z
0

1

(t¡ 2at3/2+ a2t2)dt=

�
1
2
t2¡ 4

5
at5/2+

1
3
a2t3

�
0

1

=
1
2
¡ 4
5
a+

1
3
a2:

We now minimize r(a) over all choices of a using what we learned in Calculus I: if the minimum occurs at a,
then we necessarily have r0(a)=0. We compute that r0(a)=¡4

5
+
2

3
a. Solving ¡4

5
+
2

3
a=0, we find a= 6

5
as

the only candidate. Which matches exactly what we have found above!
Clearly, this approach becomes more challenging if our approximations have more than one degree of freedom.
However, our linear algebra approach continues to work fine, as we will see in the next example.
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Sketch of Lecture 35 Mon, 4/15/2024

Example 185. Find the best approximation of f(x)= x
p

(in the L2 sense) on the interval [0;1]
using a function of the form y= a+ bx.
Important observation. The orthogonal projection of f : [0;1]!R onto spanf1; xg is not simply the projection
onto 1 plus the projection onto x. That's because 1 and x are not orthogonal:

h1; xi=
Z
0

1

tdt=
1
2
=/ 0:

Solution. To find an orthogonal basis for spanf1; xg, following Gram�Schmidt, we compute

x¡
�
projection of
x onto 1

�
= x¡ hx; 1ih1; 1i 1= x¡ 1

2
:

Hence, 1; x¡ 1

2
is an orthogonal basis for spanf1; xg.

The orthogonal projection of x
p

on [0; 1] onto spanf1; xg= span
n
1; x¡ 1

2

o
therefore is

h x
p

; 1i
h1; 1i 1+

D
x

p
; x¡ 1

2

E
D
x¡ 1

2
; x¡ 1

2

E�x¡ 1
2

�
=

R
0
1

t
p
dtR

0
11dt

+

R
0
1

t
p �

t¡ 1

2

�
dtR

0
1
�
t¡ 1

2

�
2
dt

�
x¡ 1

2

�
:

We compute the three new integrals:Z
0

1

t
p
dt =

�
2
3
t3/2

�
0

1

=
2
3Z

0

1

t
p
�
t¡ 1

2

�
dt =

Z
0

1
�
t3/2¡ 1

2
t1/2

�
dt=

�
2
5
t5/2¡ 1

3
t3/2

�
0

1

=
2
5
¡ 1
3
=

1
15Z

0

1
�
t¡ 1

2

�
2

dt =

Z
0

1
�
t2¡ t+ 1

4

�
dt=

�
1
3
t3¡ 1

2
t2+

1
4
t

�
0

1

=
1
3
¡ 1
2
+
1
4
=

1
12

Using these values, the best approximation is

R
0
1

t
p
dtR

0
11dt

+

R
0
1

t
p �

t¡ 1

2

�
dtR

0
1
�
t¡ 1

2

�
2
dt

�
x¡ 1

2

�
=

2
3
+
12
15

�
x¡ 1

2

�
=
4
5
x+

4
15

The plot below confirms how good this linear approximation is (compare with the previous example):

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Sketch of Lecture 36 Wed, 4/17/2024

Orthogonal polynomials

Example 186. Proceeding as in the previous example, compute an orthogonal basis for the space
spanf1; x; x2; x3g.
Solution. To find an orthogonal basis, we use Gram�Schmidt:

q1 = 1

q2 = x¡ hx; q1i
hq1; q1i

q1= x¡ hx; 1ih1; 1i1= x¡ 1
2

q3 = x2¡ hx
2; q1i

hq1; q1i
q1¡

hx2; q2i
hq2; q2i

q2= x2¡ hx
2; 1i
h1; 1i 1¡

D
x2; x¡ 1

2

E
D
x¡ 1

2
; x¡ 1

2

E�x¡ 1
2

�

= x2¡
1

3

1
1¡

1

12
1

12

�
x¡ 1

2

�
= x2¡ x+ 1

6

q4 = x3¡ hx
3; q1i

hq1; q1i
q1¡

hx3; q2i
hq2; q2i

q2¡
hx3; q3i
hq3; q3i

q3= :::= x3¡ 3
2
x2+

3
5
x¡ 1

20

The polynomials 1, x¡ 1

2
, x2¡x+ 1

6
, x3¡ 3

2
x2+

3

5
x¡ 1

20
form an orthogonal basis for the space of polynomials

of degree at most 3.
Comment. Of course, we could keep going by next including x4; x5; ::: Up to scaling, the resulting polynomials
are known as the shifted Legendre polynomials and they are an example of a family of orthogonal polynomials.
They are important, for instance, in approximating more complicated functions using polynomials (see the
previous example, for instance).
Homework. Fill in the details of the computation for q4 (maybe using Sage for support). For instance, here is
how to compute

R
0
1
t2
�
t¡ 1

2

�
dt using Sage:

>>> t = var('t')

>>> integral(t^2*(t-1/2), t, 0, 1)

1
12

In the literature, the interval [0; 1] is often replaced with the interval [¡1; 1] (because of the
symmetry). If we proceed as above, then the resulting orthogonal polynomials are known as the
Legendre polynomials. In the case of the interval [¡1;1], we consider the space of all polynomials
(with real coefficients) together with the dot product

hp1; p2i=
Z
¡1

1

p1(t)p2(t)dt: (1)

Comment. That dot product is useful if we are thinking about the polynomials as functions on [¡1; 1] only.
You can, of course, consider any other interval and you will obtain a shifted version of what we get here.

Example 187. Are 1; x; x2; ::: orthogonal (with respect to the inner product (1))?

Solution. Since hxr; xsi=
Z
¡1

1

trtsdt=

Z
¡1

1

tr+sdt, we find that hxr; xsi=

8<:
2

r+ s+1
; if r+ s is even,

0; otherwise:

Hence, if r+ s is odd, then the monomials xr and xs are orthogonal. On the other hand, if r+ s is even, then
xr and xs are not orthogonal.
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Example 188. Use Gram-Schmidt to produce an orthogonal basis p0; p1; p2; ::: for the space of
polynomials with the dot product (1). Compute p0; p1; p2; p3; p4.

Instead of normalizing these polynomials, standardize them so that pn(1)= 1.

Solution. We construct an orthogonal basis p0; p1; p2; ::: from 1; x; x2; ::: as follows:

� Starting with 1, we find p0(x)= 1.

For future reference, let us note that kp0k2=
Z
¡1

1

1dx=2.

� Starting with x, Gram�Schmidt produces x¡
�
projection of
x onto p0

�
= x¡ hx; p0i

hp0; p0i
p0=x¡

Z
¡1

1

tdt= x.

Again, that's already standardized, so that p1(x)= x.
Comment. The previous problem already told us that x is orthogonal to 1.

For future reference, let us note that kp1k2=
Z
¡1

1

t2dt=
2
3
.

� Starting with x, Gram�Schmidt produces x2¡
�

projection of x2
onto spanfp0; p1g

�
= x2¡ hx

2; p0i
hp0; p0i

p0¡
hx2; p1i
hp1; p1i

p1

=x2¡ 1
2

Z
¡1

1

t2dt¡ x
2/3

Z
¡1

1

t3dt=x2¡ 1
3
.

Hence, standardizing, p2(x)=
1

2
(3x2¡ 1).

Comment. The previous problem told us that x2 is orthogonal to x (but not to 1).

� Continuing, we find p3(x)=
1

2
(5x3¡ 3x) and p4(x)= 1

8
(35x4¡ 30x2+3).

Comment. These famous polynomials are known as the Legendre polynomials. The Legendre polynomial pn
is an even function if n is even, and an odd function if n is odd (can you explain why?!).

An explicit formula is pn(x)= 2¡n
P

k=0
n

�
n
k

�2
(x+1)k(x¡ 1)n¡k.

For instance, p2(x)=
1

4
((x¡ 1)2+22(x¡ 1)(x+1)+ (x+1)2)=

1

2
(3x2¡ 1).

https://en.wikipedia.org/wiki/Legendre_polynomials

Comment. Legendre polynomials are an example of orthogonal polynomials. Each choice of dot product gives
rise to a family of such orthogonal polynomials.
https://en.wikipedia.org/wiki/Orthogonal_polynomials

Comment. It is also particularly natural to consider the dot product (1), where the integral is from 0 to 1. In
that case, we obtain what's known as the shifted Legendre polynomials p~n(x)= pn(2x¡ 1). Compute the first
few and compare with Example 186.

Comment on other norms. Our choice of inner product

hf ; gi=
Z
a

b

f(t)g(t)dt

for (square-integrable) functions on [a; b] gives rise to the norm kf k=
¡R
a
b
f(t)2dt

�1/2. This is known as the
L2-norm (and often written as kf k2).
It is the continuous analog of the usual Euclidean norm kvk=(v1

2+ v2
2+ :::)1/2 (known as `2-norm).

There do exist other norms to measure the magnitude of vectors, such as the `1-norm kvk1= jv1j+ jv2j+ :::
or, more generally, for p>1, the `p-norms kvkp=(jv1jp+ jv2jp+ :::)1/p.

Likewise, for functions, we have the Lp-norms kf kp=
¡R
a
b
f(t)pdt

�1/p.
Only in the case p = 2 do these norms come from an inner product. That's a mathematical (as opposed to
geometric) reason why we especially care about that case.
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Example 189. Give a basis for the space of all polynomials.
Solution. 1; x; x2; x3; :::
Indeed, every polynomial p(x) = a0+ a1x+ a2x

2+ :::+ anx
n can be written uniquely as a sum of these basis

elements. (�can be� = span; �uniquely� = independent)
Comment. The dimension is 1. But we can make a list of basis elements, which is the �smallest kind of 1�
and is referred to as countably infinite. For the space of all functions, no such list can be made.
Just for fun. Let us indicate this difference in infiniteness in a slightly simpler situation: first, the natural numbers
0; 1; 2; 3::: are infinite but they are countable, because we can make a (infinite but complete) list starting with
a first, then a second element and so on (hence, the name �countable�). On the other hand, consider the real
numbers between 0 and 1. Clearly, there are infinitely many such numbers. The somewhat shocking fact (first
realized by Georg Cantor in 1874) is that every attempt of making a complete list of these numbers must fail
because every list will inevitably miss some numbers. Here's a brief indication of how the famous diagonal
argument goes: suppose you can make a list, say:

#1 0.111111:::
#2 0.123456:::
#3 0.750000:::
���

Now, we are going to construct a new number x=0:x1x2x3::: with decimal digits xi in such a way that the digit xi
differs (by more than 1) from the ith digit of number#i on our list. For instance, 0.352::: in our case (for instance,
x3=2 differs from 0, the 3rd digit of sequence #3). By construction, the number x is missing from the list.
Comment on fun. The statement �some infinities are bigger than others� nicely captures our observation. It
appears in the book The Fault in Our Stars by John Green, where it is said by a cranky old author who attributes
it to Cantor. Hazel, the main character, later reflects on that statement and compares [0; 1] to [0; 2]. Can you
explain why that is actually not what Cantor meant:::?
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Sketch of Lecture 37 Fri, 4/19/2024

Fourier series

A Fourier series for a function f(x) is a series of the form

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x)+ ���

You may have seen Fourier series in other classes before. Our goal here is to tie them in with what
we have learned about orthogonality.
In these other classes, you would have seen formulas for the coefficients ak and bk. We will see where those
come from.
Observe that the right-hand side combination of cosines and sines is 2�-periodic.

Let us consider (nice) functions on [0; 2�].
Or, equivalently, functions that are 2�-periodic.

We know that a natural inner product for that space of functions is

hf ; gi=
Z
0

2�

f(t)g(t)dt:

Example 190. Show that cos(x) and sin(x) are orthogonal (in that sense).

Solution. hcos(x); sin(x)i=
Z
0

2�

cos(t)sin(t)dt=
�
1
2
(sin(t))2

�
0

2�

=0

In fact:

All the functions 1; cos(x); sin(x); cos(2x); sin(2x); ::: are orthogonal to each other!

Moreover, they form a basis in the sense that every other (nice) function can be written as a (infinite) linear
combination of these basis functions.

Example 191. What is the norm of cos(x)?

Solution. hcos(x); cos(x)i=
Z
0

2�

cos(t)cos(t)dt=�

Why? There's many ways to evaluate this integral. For instance:

� integration by parts

� using a trig identity

� here's a simple way:

�
R
0
2�cos2(t)dt=

R
0
2�sin2(t)dt (cos and sin are just a shift apart)

� cos2(t)+ sin2(t)= 1

� So:
R
0
2�cos2(t)dt= 1

2

R
0
2�
1dx=�

Hence, cos(x) is not normalized. It has norm kcos(x)k= �
p

.

Similarly. The same calculation shows that cos(kx) and sin(kx) have norm �
p

as well.
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Example 192. How do we find, say, b2?
Solution. Since the functions 1; cos(x); sin(x); cos(2x); sin(2x); :::, the term b2sin(2x) is the orthogonal
projection of f(x) onto sin(2x).

In particular, b2=
hf(x); sin(2x)i
hsin(2x); sin(2x)i =

1
�

Z
0

2�

f(t)sin(2t)dx.

In conclusion:
A (nice) f(x) on [0; 2�] has the Fourier series

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x)+ ���

where

ak=
hf(x); cos(kx)i
hcos(kx); cos(kx)i =

1
�

Z
0

2�

f(t)cos(kt)dt;

bk=
hf(x); sin(kx)i
hsin(kx); sin(kx)i =

1
�

Z
0

2�

f(t)sin(kt)dt;

a0=
hf(x); 1i
h1; 1i =

1
2�

Z
0

2�

f(t)dt:

The next example illustrates that we can likewise deal with intervals other than [0; 2�] (or,
equivalently, 2�-periodic functions).

The main observation is that, since cos(x) has period 2�, the scaled function cos
�
2�

L
x
�
has period L.

As we are just scaling, it is not hard to see that the functions

1; cos
�
2�
L
x

�
; sin

�
2�
L
x

�
; cos

�
2 � 2�

L
x

�
; sin

�
2 � 2�

L
x

�
; cos

�
3 � 2�

L
x

�
; :::

are still orthogonal to each other�now, adjusted for period L, with respect to the inner product

hf ; gi=
Z
0

L

f(t)g(t)dt:

Example 193. Suppose that f(x) is 5-periodic. Write down the first few terms of the Fourier
series for f(x) with undetermined coefficients. Spell out how to compute the coefficients of the
sine functions.
Solution. The Fourier series for f(x) is

f(x)= a0+ a1cos
�
2�
5
x

�
+ b1sin

�
2�
5
x

�
+ a2cos

�
4�
5
x

�
+ b2sin

�
4�
5
x

�
+ a3cos

�
6�
5
x

�
+ :::

The coefficients bn can be computed as

bn=

D
f(x); sin

�
2�

5
nx
�E

D
sin
�
2�

5
nx
�
; sin

�
2�

5
nx
�E = R05f(t)sin

�
2�

5
nt
�
dtR

0
5sin2

�
2�

5
nt
�
dt

=
2
5

Z
0

5

f(t)sin
�
2�
5
nt

�
dt:

For the final (optional) equality, we used that
R
0
5sin2

�
2�

5
nt
�
dt=

R
0
5cos2

�
2�

5
nt
�
dt combined with cos2+sin2=

1 to conclude that the integral in the denominator must be 5

2
.
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Sketch of Lecture 38 Mon, 4/22/2024

Example 194. Find the Fourier series of the 2�-periodic function f(t) defined by

f(t)=

8>><>>:
¡1; for t2 (¡�; 0),
+1; for t2 (0; �);
0; for t=¡�; 0; �:

−π π 2π 3π 4π

Solution. We compute a0=
1
�

Z
¡�

�

f(t)dt=0, as well as

an =
1
�

Z
¡�

�

f(t)cos(nt)dt= 1
�

�
¡
Z
¡�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
¡�

�

f(t)sin(nt)dt= 1
�

�
¡
Z
¡�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1¡ cos(n�)]

=
2
�n

[1¡ (¡1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t)=
X
n=1
n odd

1
4
�n

sin(nt)= 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.

−π π 2π 3π 4π

Observation. The coefficients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=¡�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t¡)+ f(t+)

2
).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �=4[1¡ 1

3
+
1

5
¡ 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10¡768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not completely obvious! Recall, for instance, that the (odd part of) the
harmonic series 1 + 1

3
+

1

5
+

1

7
+ ��� diverges. (On the other hand, do you remember the alternating sign test

from Calculus II?)
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Linear transformations

Throughout, V and W are vector spaces.
Just like we went from column vectors to abstract vectors (such as polynomials), the concept of a matrix leads
to abstract linear transformations.
In the other direction, picking a basis, abstract vectors can be represented as column vectors (see Lecture 35).
Correspondingly, linear transformations can then be represented as matrices.

Definition 195. A map T :V !W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x; y in V and all c; d in R.

In other words, a linear transformation respects addition and scaling:

� T (x+ y)=T (x)+T (y)

� T (cx)= cT (x)

It necessarily sends the zero vector in V to the zero vector in W :
� T (0)=0 [because T (0)=T (0 �0)= 0 �T (0)=0]

Comment. Linear transformations are special functions and, hence, can be composed. For instance, if T :V !W
and S:U!V are linear transformations, then T �S is a linear transformation U!W (sending x to T (S(x))).
If S; T are represented by matrices A;B, then T � S is represented by the matrix BA. In other words, matrix
multiplication arises as the composition of (linear) functions.

Example 196. The derivative you know from Calculus I is linear.

Indeed, the map D:

8<: space of all
differentiable
functions

9=;!
�
space of all
functions

�
defined by f(x) 7! f 0(x) is a linear transformation:

� D(f(x)+ g(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(f(x)+g(x))0

=D(f(x))|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f 0(x)

+D(g(x))||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g 0(x)

� D(cf(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(cf(x))0

= cD(f(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
cf 0(x)

These are among the first properties you learned about the derivative.

Similarly, the integral you love from Calculus II is linear:Z
a

b

(f(x)+ g(x))dx=

Z
a

b

f(x)dx+

Z
a

b

g(x)dx;

Z
a

b

cf(x)dx= c

Z
a

b

f(x)dx

In this form, we are looking at a map T :

8<:space of allcontinuous
functions

9=;!R defined by T (f(x))=
Z
a

b

f(x)dx.

Example 197. Consider the space V of all polynomials p(x) of degree 3 or less. The map D:
V ! V given by p(x) 7! p0(x) is a linear. Write down the matrix M for this linear map with
respect to the basis 1; x; x2; x3.

Solution. M =

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 �x+0 �x2+0 �x3=2x.
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Example 198. Consider the map

D:
�
space of poly's
of degree 63

�
!
�
space of poly's
of degree 62

�
; p(x) 7! p0(x):

Write down the matrix M for this linear map with respect to the bases 1; x; x2; x3 and 1; x; x2.

Solution. M =

24 0 1 0 0
0 0 2 0
0 0 0 3

35
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 � x+0 �x2=2x.

Example 199. What is the pseudo-inverse of the matrixM from the previous example? Interpret
your finding.

Solution. (final answer only) The pseudo-inverse of

24 0 1 0 0
0 0 2 0
0 0 0 3

35 is
266664
0 0 0
1 0 0
0 1/2 0
0 0 1/3

377775.
The corresponding linear map sends 1 to x, x to 1

2
x2 and x2 to 1

3
x3. That is, the pseudo-inverse computes the

antiderivative of each monomial.
Comment. This is not surprising, since we are familiar from Calculus with the concepts of derivatives and
antiderivatives (or integrals), and that these are �pseudo� inverse to each other.

Comment. Similarly, the pseudo-inverse of

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775 is
266664
0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0

377775.
Now, the corresponding linear map sends 1 to x, x to 1

2
x2, x2 to 1

3
x3, and x3 to 0. That is, the pseudo-inverse

computes the antiderivative of each monomial, with the exception of x3 which gets send to 0 (its antiderivative
does not live in the space of polynomials of degree 3).

Example 200. (The April Fools' Day �proof� that �=4, cont'd)
In that �proof�, we are constructing curves cn with the property that cn!c where c is the circle. This convergence
can be understood, for instance, in the same sense kcn¡ck!0 with the norm introduced as we did for functions.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn! x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very different arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= f(x) for x2 [a; b] isZ

a

b

(dx)2+(dy)2
q

=

Z
a

b

1+ f 0(x)2
q

dx:

Observe that this involves f 0. Try to see why the operator D that sends f to f 0 is not continuous with respect
to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�
1/2

:

In words, two functions f and g can be arbitrarily close, yet have very different derivatives f 0 and g0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to infinite dimensional
spaces (like the space of all differentiable functions). The linear operators (�matrices�) on these spaces frequently
fail to be continuous.
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How little we actually know!

Q: How fast can we solve N linear equations in N unknowns?

Estimated cost of Gaussian elimination:266664
� � � ��� �
0 � � ��� �
��� ��� ���
0 � � ��� �

377775
� to create the zeros below the first pivot:

=) on the order of N2 operations

� if there are N pivots total:

=) on the order of N �N2=N3 operations

� A more careful count places the cost at �1

3
N3 operations.

� For large N , it is only the N3 that matters.

It says that if N! 10N then we have to work 1000 times as hard.

That's not optimal! We can do better than Gaussian elimination:

� Strassen algorithm (1969): N log27=N2.807

� Coppersmith�Winograd algorithm (1990): N2.375

� ::: Stothers�Williams�Le Gall (2014): N2.373 (If N! 10N then we have to work 229 times as hard.)

Is N2+(a tiny bit) possible? We don't know! (People increasingly suspect so.) (Better than N2 is impossible; why?)

Comment. The above algorithms actually are for computing matrix products. It can be shown that, if M(N)
is the cost for multiplying two N �N matrices, then N �N systems can also be solved for cost on the order
of M(N). In other words, we don't even know how costly it is to multiply two matrices.

Good news for applications:

� Matrices typically have lots of structure and zeros

which makes solving so much faster.
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