
Sketch of Lecture 38 Mon, 4/22/2024

Example 194. Find the Fourier series of the 2�-periodic function f(t) defined by

f(t)=

8>><>>:
¡1; for t2 (¡�; 0),
+1; for t2 (0; �);
0; for t=¡�; 0; �:
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Solution. We compute a0=
1
�

Z
¡�

�

f(t)dt=0, as well as

an =
1
�

Z
¡�

�

f(t)cos(nt)dt= 1
�

�
¡
Z
¡�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
¡�

�

f(t)sin(nt)dt= 1
�

�
¡
Z
¡�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1¡ cos(n�)]

=
2
�n

[1¡ (¡1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t)=
X
n=1
n odd

1
4
�n

sin(nt)= 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.
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Observation. The coefficients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=¡�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t¡)+ f(t+)

2
).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �=4[1¡ 1

3
+
1

5
¡ 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10¡768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not completely obvious! Recall, for instance, that the (odd part of) the
harmonic series 1 + 1

3
+

1

5
+

1

7
+ ��� diverges. (On the other hand, do you remember the alternating sign test

from Calculus II?)
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Linear transformations

Throughout, V and W are vector spaces.
Just like we went from column vectors to abstract vectors (such as polynomials), the concept of a matrix leads
to abstract linear transformations.
In the other direction, picking a basis, abstract vectors can be represented as column vectors (see Lecture 35).
Correspondingly, linear transformations can then be represented as matrices.

Definition 195. A map T :V !W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x; y in V and all c; d in R.

In other words, a linear transformation respects addition and scaling:

� T (x+ y)=T (x)+T (y)

� T (cx)= cT (x)

It necessarily sends the zero vector in V to the zero vector in W :
� T (0)=0 [because T (0)=T (0 �0)= 0 �T (0)=0]

Comment. Linear transformations are special functions and, hence, can be composed. For instance, if T :V !W
and S:U!V are linear transformations, then T �S is a linear transformation U!W (sending x to T (S(x))).
If S; T are represented by matrices A;B, then T � S is represented by the matrix BA. In other words, matrix
multiplication arises as the composition of (linear) functions.

Example 196. The derivative you know from Calculus I is linear.

Indeed, the map D:

8<: space of all
differentiable
functions

9=;!
�
space of all
functions

�
defined by f(x) 7! f 0(x) is a linear transformation:

� D(f(x)+ g(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(f(x)+g(x))0

=D(f(x))|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f 0(x)

+D(g(x))||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g 0(x)

� D(cf(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(cf(x))0

= cD(f(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
cf 0(x)

These are among the first properties you learned about the derivative.

Similarly, the integral you love from Calculus II is linear:Z
a

b

(f(x)+ g(x))dx=

Z
a

b

f(x)dx+

Z
a

b

g(x)dx;

Z
a

b

cf(x)dx= c

Z
a

b

f(x)dx

In this form, we are looking at a map T :

8<:space of allcontinuous
functions

9=;!R defined by T (f(x))=
Z
a

b

f(x)dx.

Example 197. Consider the space V of all polynomials p(x) of degree 3 or less. The map D:
V ! V given by p(x) 7! p0(x) is a linear. Write down the matrix M for this linear map with
respect to the basis 1; x; x2; x3.

Solution. M =

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 �x+0 �x2+0 �x3=2x.
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Example 198. Consider the map

D:
�
space of poly's
of degree 63

�
!
�
space of poly's
of degree 62

�
; p(x) 7! p0(x):

Write down the matrix M for this linear map with respect to the bases 1; x; x2; x3 and 1; x; x2.

Solution. M =

24 0 1 0 0
0 0 2 0
0 0 0 3

35
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 � x+0 �x2=2x.

Example 199. What is the pseudo-inverse of the matrixM from the previous example? Interpret
your finding.

Solution. (final answer only) The pseudo-inverse of

24 0 1 0 0
0 0 2 0
0 0 0 3

35 is
266664
0 0 0
1 0 0
0 1/2 0
0 0 1/3

377775.
The corresponding linear map sends 1 to x, x to 1

2
x2 and x2 to 1

3
x3. That is, the pseudo-inverse computes the

antiderivative of each monomial.
Comment. This is not surprising, since we are familiar from Calculus with the concepts of derivatives and
antiderivatives (or integrals), and that these are �pseudo� inverse to each other.

Comment. Similarly, the pseudo-inverse of

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775 is
266664
0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0

377775.
Now, the corresponding linear map sends 1 to x, x to 1

2
x2, x2 to 1

3
x3, and x3 to 0. That is, the pseudo-inverse

computes the antiderivative of each monomial, with the exception of x3 which gets send to 0 (its antiderivative
does not live in the space of polynomials of degree 3).

Example 200. (The April Fools' Day �proof� that �=4, cont'd)
In that �proof�, we are constructing curves cn with the property that cn!c where c is the circle. This convergence
can be understood, for instance, in the same sense kcn¡ck!0 with the norm introduced as we did for functions.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn! x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very different arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= f(x) for x2 [a; b] isZ

a

b

(dx)2+(dy)2
q

=

Z
a

b

1+ f 0(x)2
q

dx:

Observe that this involves f 0. Try to see why the operator D that sends f to f 0 is not continuous with respect
to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�
1/2

:

In words, two functions f and g can be arbitrarily close, yet have very different derivatives f 0 and g0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to infinite dimensional
spaces (like the space of all differentiable functions). The linear operators (�matrices�) on these spaces frequently
fail to be continuous.
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How little we actually know!

Q: How fast can we solve N linear equations in N unknowns?

Estimated cost of Gaussian elimination:266664
� � � ��� �
0 � � ��� �
��� ��� ���
0 � � ��� �

377775
� to create the zeros below the first pivot:

=) on the order of N2 operations

� if there are N pivots total:

=) on the order of N �N2=N3 operations

� A more careful count places the cost at �1

3
N3 operations.

� For large N , it is only the N3 that matters.

It says that if N! 10N then we have to work 1000 times as hard.

That's not optimal! We can do better than Gaussian elimination:

� Strassen algorithm (1969): N log27=N2.807

� Coppersmith�Winograd algorithm (1990): N2.375

� ::: Stothers�Williams�Le Gall (2014): N2.373 (If N! 10N then we have to work 229 times as hard.)

Is N2+(a tiny bit) possible? We don't know! (People increasingly suspect so.) (Better than N2 is impossible; why?)

Comment. The above algorithms actually are for computing matrix products. It can be shown that, if M(N)
is the cost for multiplying two N �N matrices, then N �N systems can also be solved for cost on the order
of M(N). In other words, we don't even know how costly it is to multiply two matrices.

Good news for applications:

� Matrices typically have lots of structure and zeros

which makes solving so much faster.
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