
Sketch of Lecture 36 Wed, 4/17/2024

Orthogonal polynomials

Example 186. Proceeding as in the previous example, compute an orthogonal basis for the space
spanf1; x; x2; x3g.
Solution. To find an orthogonal basis, we use Gram�Schmidt:
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form an orthogonal basis for the space of polynomials

of degree at most 3.
Comment. Of course, we could keep going by next including x4; x5; ::: Up to scaling, the resulting polynomials
are known as the shifted Legendre polynomials and they are an example of a family of orthogonal polynomials.
They are important, for instance, in approximating more complicated functions using polynomials (see the
previous example, for instance).
Homework. Fill in the details of the computation for q4 (maybe using Sage for support). For instance, here is
how to compute

R
0
1
t2
�
t¡ 1

2

�
dt using Sage:

>>> t = var('t')

>>> integral(t^2*(t-1/2), t, 0, 1)

1
12

In the literature, the interval [0; 1] is often replaced with the interval [¡1; 1] (because of the
symmetry). If we proceed as above, then the resulting orthogonal polynomials are known as the
Legendre polynomials. In the case of the interval [¡1;1], we consider the space of all polynomials
(with real coefficients) together with the dot product

hp1; p2i=
Z
¡1

1

p1(t)p2(t)dt: (1)

Comment. That dot product is useful if we are thinking about the polynomials as functions on [¡1; 1] only.
You can, of course, consider any other interval and you will obtain a shifted version of what we get here.

Example 187. Are 1; x; x2; ::: orthogonal (with respect to the inner product (1))?

Solution. Since hxr; xsi=
Z
¡1

1

trtsdt=

Z
¡1

1

tr+sdt, we find that hxr; xsi=

8<:
2

r+ s+1
; if r+ s is even,

0; otherwise:

Hence, if r+ s is odd, then the monomials xr and xs are orthogonal. On the other hand, if r+ s is even, then
xr and xs are not orthogonal.
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Example 188. Use Gram-Schmidt to produce an orthogonal basis p0; p1; p2; ::: for the space of
polynomials with the dot product (1). Compute p0; p1; p2; p3; p4.

Instead of normalizing these polynomials, standardize them so that pn(1)= 1.

Solution. We construct an orthogonal basis p0; p1; p2; ::: from 1; x; x2; ::: as follows:

� Starting with 1, we find p0(x)= 1.

For future reference, let us note that kp0k2=
Z
¡1

1

1dx=2.

� Starting with x, Gram�Schmidt produces x¡
�
projection of
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�
= x¡ hx; p0i

hp0; p0i
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Z
¡1

1

tdt= x.

Again, that's already standardized, so that p1(x)= x.
Comment. The previous problem already told us that x is orthogonal to 1.

For future reference, let us note that kp1k2=
Z
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1

t2dt=
2
3
.

� Starting with x, Gram�Schmidt produces x2¡
�

projection of x2
onto spanfp0; p1g

�
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2; p0i
hp0; p0i
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2

Z
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1

t2dt¡ x
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Z
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t3dt=x2¡ 1
3
.

Hence, standardizing, p2(x)=
1

2
(3x2¡ 1).

Comment. The previous problem told us that x2 is orthogonal to x (but not to 1).

� Continuing, we find p3(x)=
1

2
(5x3¡ 3x) and p4(x)= 1

8
(35x4¡ 30x2+3).

Comment. These famous polynomials are known as the Legendre polynomials. The Legendre polynomial pn
is an even function if n is even, and an odd function if n is odd (can you explain why?!).

An explicit formula is pn(x)= 2¡n
P

k=0
n

�
n
k

�2
(x+1)k(x¡ 1)n¡k.

For instance, p2(x)=
1

4
((x¡ 1)2+22(x¡ 1)(x+1)+ (x+1)2)=

1

2
(3x2¡ 1).

https://en.wikipedia.org/wiki/Legendre_polynomials

Comment. Legendre polynomials are an example of orthogonal polynomials. Each choice of dot product gives
rise to a family of such orthogonal polynomials.
https://en.wikipedia.org/wiki/Orthogonal_polynomials

Comment. It is also particularly natural to consider the dot product (1), where the integral is from 0 to 1. In
that case, we obtain what's known as the shifted Legendre polynomials p~n(x)= pn(2x¡ 1). Compute the first
few and compare with Example 186.

Comment on other norms. Our choice of inner product

hf ; gi=
Z
a

b

f(t)g(t)dt

for (square-integrable) functions on [a; b] gives rise to the norm kf k=
¡R
a
b
f(t)2dt

�1/2. This is known as the
L2-norm (and often written as kf k2).
It is the continuous analog of the usual Euclidean norm kvk=(v1

2+ v2
2+ :::)1/2 (known as `2-norm).

There do exist other norms to measure the magnitude of vectors, such as the `1-norm kvk1= jv1j+ jv2j+ :::
or, more generally, for p>1, the `p-norms kvkp=(jv1jp+ jv2jp+ :::)1/p.

Likewise, for functions, we have the Lp-norms kf kp=
¡R
a
b
f(t)pdt

�1/p.
Only in the case p = 2 do these norms come from an inner product. That's a mathematical (as opposed to
geometric) reason why we especially care about that case.
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Example 189. Give a basis for the space of all polynomials.
Solution. 1; x; x2; x3; :::
Indeed, every polynomial p(x) = a0+ a1x+ a2x

2+ :::+ anx
n can be written uniquely as a sum of these basis

elements. (�can be� = span; �uniquely� = independent)
Comment. The dimension is 1. But we can make a list of basis elements, which is the �smallest kind of 1�
and is referred to as countably infinite. For the space of all functions, no such list can be made.
Just for fun. Let us indicate this difference in infiniteness in a slightly simpler situation: first, the natural numbers
0; 1; 2; 3::: are infinite but they are countable, because we can make a (infinite but complete) list starting with
a first, then a second element and so on (hence, the name �countable�). On the other hand, consider the real
numbers between 0 and 1. Clearly, there are infinitely many such numbers. The somewhat shocking fact (first
realized by Georg Cantor in 1874) is that every attempt of making a complete list of these numbers must fail
because every list will inevitably miss some numbers. Here's a brief indication of how the famous diagonal
argument goes: suppose you can make a list, say:

#1 0.111111:::
#2 0.123456:::
#3 0.750000:::
���

Now, we are going to construct a new number x=0:x1x2x3::: with decimal digits xi in such a way that the digit xi
differs (by more than 1) from the ith digit of number#i on our list. For instance, 0.352::: in our case (for instance,
x3=2 differs from 0, the 3rd digit of sequence #3). By construction, the number x is missing from the list.
Comment on fun. The statement �some infinities are bigger than others� nicely captures our observation. It
appears in the book The Fault in Our Stars by John Green, where it is said by a cranky old author who attributes
it to Cantor. Hazel, the main character, later reflects on that statement and compares [0; 1] to [0; 2]. Can you
explain why that is actually not what Cantor meant:::?
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