
Sketch of Lecture 35 Mon, 4/15/2024

Example 185. Find the best approximation of f(x)= x
p

(in the L2 sense) on the interval [0;1]
using a function of the form y= a+ bx.
Important observation. The orthogonal projection of f : [0;1]!R onto spanf1; xg is not simply the projection
onto 1 plus the projection onto x. That's because 1 and x are not orthogonal:
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Solution. To find an orthogonal basis for spanf1; xg, following Gram�Schmidt, we compute
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We compute the three new integrals:Z
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Using these values, the best approximation is
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The plot below confirms how good this linear approximation is (compare with the previous example):
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