
Sketch of Lecture 34 Fri, 4/12/2024

Review. matrix approximation and compression

Function spaces

Recall the following:

� We call objects vectors if they can be added and scaled (subject to the usual laws).

� A set of vectors is a vector space if it is closed under addition and scaling.

In other words, vector spaces are spans.

We will now discuss spaces of vectors, where the vectors are functions.

Why? Just one example why it is super useful to apply our linear algebra machinery to functions: we discussed
the distance between vectors and how to find vectors closest to interesting subspaces (i.e. orthogonal projections).
These notions are important for functions, too. For instance, given a (complicated) function, we want to find
the closest function in a subspace of (simple) functions. In other words, we want to approximate functions using
other (typically, simpler) functions.
Comment. Functions f(x) and g(x) can also be multiplied. This is an extra structure (it makes appropriate
sets of functions an algebra, which is something more special than a vector space), which we ignore during our
discussion of vector spaces.

An inner product on function spaces

On the space of, say, (piecewise) continuous functions f : [a; b]!R, it is natural to consider
the dot product

hf ; gi=
Z
a

b

f(t)g(t)dt:

Why? A (sensible) dot product provides a (sensible) notion of distance between functions. The dot product
above is the continuous analog of the usual dot product hx; yi=

P
t=1
n xtyt for vectors in Rn. Do you see it?!

As a consequence, once we have the dot product, we can orthogonally project functions onto spaces of simple
functions. In other words, we can compute best approximations of functions by simple functions (for instance,
best quadratic approximations).
Why continuous? We need that any product f(x)g(x) is integrable. That means we cannot work with all
functions. Continuity is certainly sufficient. In fact, the right condition is that f(x)2 should be integrable on
[a; b] (i.e. f(x) is square-integrable). Such a function is said to be in L2[a; b].

Example 183. What is the orthogonal projection of f : [a; b]! R onto the space of constant
functions (that is, spanf1g)?
Solution. The orthogonal projection of f : [a; b]!R onto spanf1g is

hf ; 1i
h1; 1i 1=

R
a
b
f(t)1dtR
a
b12dt

=
1

b¡ a

Z
a

b

f(t)dt:

This is the average of f(x) on [a; b].
Comment. Makes perfect sense, doesn't it? Intuitively, the best approximation of a function by a constant
should indeed be the one where the constant is the average.
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Example 184. Find the best approximation (in the L2 sense) of f(x)= x
p

on the interval [0;1]
using a function of the form y= ax.

Solution. The orthogonal projection of f : [0;1]!R onto spanfxg
is

hf ; xi
hx; xix=

R
0
1
f(t)tdtR
0
1t2dt

x=3x

Z
0

1

tf(t)dt:

In our case, the best approximation is

3x

Z
0

1

t t
p
dt=3x

Z
0

1

t3/2dt=3x

�
1
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�
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6
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What does �in the L2 sense� mean? There are various ways to make precise what �best approximation� should
mean. Here, we mean that the norm of the error gets minimized: since the error is error(t)= t

p
¡at, this means

that

kerrork2= herror; errori=
Z
0

1

error(t)2dt=
Z
0

1

( t
p
¡ at)2dt

is minimized over all choices for a (note that it does not make a difference whether we are minimizing the norm or
the square of the norm). Since the above norm is known as the L2 norm, we are finding the best approximation
�in the L2 sense�. For instance, an alternative meaningful norm is the L1 norm, for which kerrork simply
measures the maximum absolute value of the error (this may sound simpler but there is no corresponding notion
of orthogonality so that we cannot apply tools like orthogonal projections).

For comparison. Let's minimize r(a) := kerrork2 directly! First, we compute that

r(a)=

Z
0

1

( t
p
¡ at)2dt=

Z
0

1

(t¡ 2at3/2+ a2t2)dt=

�
1
2
t2¡ 4

5
at5/2+

1
3
a2t3

�
0

1

=
1
2
¡ 4
5
a+

1
3
a2:

We now minimize r(a) over all choices of a using what we learned in Calculus I: if the minimum occurs at a,
then we necessarily have r0(a)=0. We compute that r0(a)=¡4

5
+
2

3
a. Solving ¡4

5
+
2

3
a=0, we find a= 6

5
as

the only candidate. Which matches exactly what we have found above!
Clearly, this approach becomes more challenging if our approximations have more than one degree of freedom.
However, our linear algebra approach continues to work fine, as we will see in the next example.
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