Example 170. Show that the eigenvalues of $A^{T} A$ are all nonnegative.
Proof. Suppose that λ is an eigenvalue of $A^{T} A$. Then $A^{T} A \boldsymbol{v}=\lambda \boldsymbol{v}$ (where \boldsymbol{v} is a λ-eigenvector).
It follows that $\frac{\boldsymbol{v}^{T} A^{T} A \boldsymbol{v}}{=\|A \boldsymbol{v}\|^{2} \geqslant 0}=\lambda \boldsymbol{v}^{T} \boldsymbol{v}=\lambda\|\boldsymbol{v}\|^{2}$. Finally, $\lambda\|\boldsymbol{v}\|^{2} \geqslant 0$ implies that $\lambda \geqslant 0$.

The pseudoinverse of an $m \times n$ matrix A is the matrix A^{+}such that the system $A \boldsymbol{x}=\boldsymbol{b}$ has "optimal" solution $\boldsymbol{x}=A^{+} \boldsymbol{b}$.

Here, "optimal" means that \boldsymbol{x} is the smallest least squares solution.
In particular:

- If $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution, then $\boldsymbol{x}=A^{+} \boldsymbol{b}$ is that solution.
- If $A \boldsymbol{x}=\boldsymbol{b}$ has many solutions, then $\boldsymbol{x}=A^{+} \boldsymbol{b}$ is the one of smallest norm (the "optimal" one; and there is indeed only one such optimal solution).
- If $A \boldsymbol{x}=\boldsymbol{b}$ is inconsistent but has a unique least squares solution, then $\boldsymbol{x}=A^{+} \boldsymbol{b}$ is that least squares solution.
- If $A \boldsymbol{x}=\boldsymbol{b}$ has many least squares solutions, then $\boldsymbol{x}=A^{+} \boldsymbol{b}$ is the one with smallest norm.

When there is a unique (least squares) solution, we know how to find the pseudoinverse:

- If A is invertible, then $A^{+}=A^{-1}$.
- If A has full column rank, then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$.

Recall. If $A \boldsymbol{x}=\boldsymbol{b}$ is inconsistent, a least squares solution can be determined by solving $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$. If A has full column rank (i.e. the columns of A are independent; in this context, the typical case), then $\boldsymbol{x}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}$ is the unique least squares solution to $A \boldsymbol{x}=\boldsymbol{b}$.

Example 171.

(a) What is the pseudoinverse of $\Sigma=\left[\begin{array}{ll}2 & 0 \\ 0 & 3 \\ 0 & 0\end{array}\right]$?
(b) What is the pseudoinverse of $\Sigma=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]$?
(c) What is the pseudoinverse of $\Sigma=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$?
(d) In each case, compute $\Sigma^{+} \Sigma$ and $\Sigma \Sigma^{+}$.

Solution.
(a) Recall that, if A has full column rank, then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$.

Here, $\Sigma^{T} \Sigma=\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]$, so that $\Sigma^{+}=\left(\Sigma^{T} \Sigma\right)^{-1} \Sigma^{T}=\left[\begin{array}{ll}1 / 4 & \\ & 1 / 9\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0\end{array}\right]$.
Alternative. Let us think about the optimal solution to $\Sigma \boldsymbol{x}=\boldsymbol{b}$, that is, $\left[\begin{array}{ll}2 & 0 \\ 0 & 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
The (unique) least squares solution is $\boldsymbol{x}=\left[\begin{array}{l}b_{1} / 2 \\ b_{2} / 3\end{array}\right]$. (Review if this is not obvious!)
Since $\left[\begin{array}{l}b_{1} / 2 \\ b_{2} / 3\end{array}\right]=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0\end{array}\right] \boldsymbol{b}$, we conclude that $\Sigma^{+}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0\end{array}\right]$.
(b) Let us think about the smallest norm ("optimal") solution to $\Sigma \boldsymbol{x}=\boldsymbol{b}$, that is, $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. The general solution is $\boldsymbol{x}=\left[\begin{array}{c}b_{1} / 2 \\ b_{2} / 3 \\ t\end{array}\right]$, where t is a free parameter.
Clearly, the smallest norm solution is $\left[\begin{array}{c}b_{1} / 2 \\ b_{2} / 3 \\ 0\end{array}\right]$.
Since $\left[\begin{array}{c}b_{1} / 2 \\ b_{2} / 3 \\ 0\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 3 \\ 0 & 0\end{array}\right] \boldsymbol{b}$, we conclude that $\Sigma^{+}=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 3 \\ 0 & 0\end{array}\right]$.
(c) Now, $\Sigma \boldsymbol{x}=\boldsymbol{b}$, that is, $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ has no solution (unless $b_{2}=0$).

We therefore need to think about least squares solutions.
The general least squares solution (why?!) is $\boldsymbol{x}=\left[\begin{array}{c}b_{1} / 2 \\ s \\ t\end{array}\right]$, where s, t are free parameters.
Clearly, the smallest norm least squares solution is $\left[\begin{array}{c}b_{1} / 2 \\ 0 \\ 0\end{array}\right]$.
Since $\left[\begin{array}{c}b_{1} / 2 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] \boldsymbol{b}$, we conclude that $\Sigma^{+}=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$.
(d) Firstly, $\Sigma^{+} \Sigma=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 3 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\Sigma \Sigma^{+}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Secondly, $\Sigma^{+} \Sigma=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\Sigma \Sigma^{+}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 3 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
[Note how the pseudoinverse tries to behave like the regular inverse. But since Σ has only 2 columns, $\Sigma^{+} \Sigma$ and $\Sigma \Sigma^{+}$can have rank at most 2 (so cannot be the full 3×3 identity).]
Thirdly, $\Sigma^{+} \Sigma=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\Sigma \Sigma^{+}=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
[Here, Σ has rank 1, so that $\Sigma^{+} \Sigma$ and $\Sigma \Sigma^{+}$can have rank at most 1.]
In general. Proceeding, as in this example, we find that the pseudoinverse of any $m \times n$ diagonal matrix Σ is the $n \times m$ (transposed dimensions!) diagonal matrix whose nonzero entries are the inverses of the entries of Σ. Comment. Observe that, in all three cases, $\Sigma^{++}=\Sigma$.
Comment. Note that $\left[\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right]^{+}=\left[\begin{array}{cc}1 & 0 \\ 0 & \varepsilon^{-1}\end{array}\right]$ for small $\varepsilon \neq 0$, while $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]^{+}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. This shows that the pseudoinverse is not a continuous operation.

It turns out that the pseudoinverse A^{+}can be easily obtained from the SVD of A :
Theorem 172. The pseudoinverse of an $m \times n$ matrix A with SVD $A=U \Sigma V^{T}$ is

$$
A^{+}=V \Sigma^{+} U^{T},
$$

where Σ^{+}, the pseudoinverse of Σ, is the $n \times m$ diagonal matrix, whose nonzero entries are the inverses of the entries of Σ.

Proof. The equation $A \boldsymbol{x}=\boldsymbol{b}$ is equivalent to $U \Sigma V^{T} \boldsymbol{x}=\boldsymbol{b}$ and, thus, $\Sigma V^{T} \boldsymbol{x}=U^{T} \boldsymbol{b}$.
Write $\boldsymbol{y}=V^{T} \boldsymbol{x}$ and note that \boldsymbol{y} and \boldsymbol{x} have the same norm (why?!).
We already know that the equation $\Sigma \boldsymbol{y}=U^{T} \boldsymbol{b}$ has optimal solution $\boldsymbol{y}=\Sigma^{+} U^{T} \boldsymbol{b}$.
Since \boldsymbol{y} and \boldsymbol{x} have the same norm, it follows that $\boldsymbol{x}=V \boldsymbol{y}=V \Sigma^{+} U^{T} \boldsymbol{b}$ is the optimal solution to $A \boldsymbol{x}=\boldsymbol{b}$.
Hence, $A^{+}=V \Sigma^{+} U^{T}$.

Lemma 173. The pseudoinverse of A^{+}is $A^{++}=A$.
Proof. Starting with the SVD $A=U \Sigma V^{T}$, we have $A^{+}=V \Sigma^{+} U^{T}$, which is the SVD of A^{+}. Therefore, $A^{++}=U \Sigma^{++} V^{T}$. The claim thus follows from $\Sigma^{++}=\Sigma$.

Example 174. Determine the pseudoinverse of $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ in two ways.
First, using the SVD and, second, using the fact that A has full column rank.
Solution. (SVD) We have computed the SVD of this matrix before.
Since $A=U \Sigma V^{T}$ with $U=\left[\begin{array}{ccc}-2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\ -1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}\end{array}\right], \Sigma=\left[\begin{array}{cc}\sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right], V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$,
the pseudoinverse is $A^{+}=V \Sigma^{+} U^{T}$ where $\Sigma^{+}=\left[\begin{array}{ccc}1 / \sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
Multiplying these matrices, $A^{+}=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1\end{array}\right]$.
Comment. For many applications, it may be neither necessary nor helpful to multiply V, Σ^{+}, U^{T}.

Solution. (full column rank) Since A clearly has full column rank, we also have $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$. Indeed, $A^{+}=\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]^{-1}\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1\end{array}\right]$.

Example 175. What is the pseudoinverse of $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$?
Solution. Recall (or compute) that $A=U \Sigma V^{T}$ with $U=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right], \Sigma=\left[\begin{array}{cc}\sqrt{10} & \\ & 0\end{array}\right], V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Hence, $A^{+}=V \Sigma^{+} U^{T}$ where $\Sigma^{+}=\left[\begin{array}{cc}1 / \sqrt{10} & 0 \\ 0 & 0\end{array}\right]$.
Multiplying these matrices (which may not be necessary or helpful for applications), $A^{+}=\frac{1}{10}\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right]$.
Note. Since A does not have full column rank, $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ cannot be used. That's because $A^{T} A$ is not invertible.
Comment. Here, $A^{+} A=\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $A A^{+}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{T}=\frac{1}{5}\left[\begin{array}{cc}4 & 2 \\ 2 & 1\end{array}\right]$ are not visually like the identity. However, note that these are the (orthogonal) projections onto \boldsymbol{v}_{1} and \boldsymbol{u}_{1} respectively (in particular, the eigenvalues are 1,0).

