
Sketch of Lecture 28 Mon, 3/25/2024

Example 161. (extra) We can identify complex numbers x+ iy with vectors
�
x
y

�
in R2. Then,

what is the geometric effect of multiplying with i?

Solution. Algebraically, the effect of multiplying x+ iy with i obviously is i(x+ iy)=¡y+ ix.

Since multiplication with i is obviously linear, we can represent it using a 2� 2 matrix J acting on vectors
�
x
y

�
.

J
�
1
0

�
=
�
0
1

�
(this is the same as saying i � 1= i) and J

�
0
1

�
=
�
¡1
0

�
(this is the same as saying i � i=¡1).

Hence, J =
�
0 ¡1
1 0

�
. This is precisely the rotation matrix for a rotation by 90�.

In other words, multiplication with i has the geometric effect of rotating complex numbers by 90�.
Comment. The relation i2=¡1 translates to J2=¡I.
Complex numbers as 2� 2 matrices. In light of the above, we can express complex numbers x+ iy as the
2�2 matrix xI+ yJ=

�
x ¡y
y x

�
. Adding and multiplying these matrices behaves exactly the same way as adding

or multiplying the complex numbers directly.

For instance, (2+ 3i)(4¡ i)= 8+ 10i¡ 3i2= 11+ 10i versus
�
2 ¡3
3 2

��
4 1
¡1 4

�
=
�
11 ¡10
10 11

�
.

Likewise for inverses: 1

2+ 3i
=

2¡ 3i
(2+ 3i)(2¡ 3i) =

2¡ 3i
13

versus
�
2 ¡3
3 2

�¡1
=

1

13

�
2 3
¡3 2

�

Extra: More details on the spectral theorem

Let us add hv;wi to our notations for the dot product: hv ;wi=vTw=v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2¡kv¡wk2). See Example 28.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A=AT) are of interest.
For every matrix A, hAv;wi= hv; ATwi.
It follows that, a matrix A is symmetric if and only if hAv;wi= hv; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv; Qwi= hv;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv;wi for all vectors v;w.
Comment. We observed in Example 155 that orthogonal matrices Q correspond to rotations (detQ=1)
or reflections (detQ=¡1) [or products thereof]. The equality hQv; Qwi= hv;wi encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDP T , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.
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Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A = PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows from AT =(PDPT)T =(PT )TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

We already proved the first part in Theorem 94 using the same argument and only slightly different notation.

Theorem 162.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then hv;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v;wi= hAv;wi= hv; ATwi= hv; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v�Tv= 0. But v�Tv= v�v= kvk2=/ 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue.
Alternative proof. Note that a complex number � is real if and only if �� = �. Suppose that � is an
eigenvalue with nonzero eigenvector v so that Av=�v. We now observe that �v�v=v�(�v)=v�Av=
v�A�v= (Av)�v= (�v)�v= ��v�v. Dividing by kvk2= v�v (which is not zero!) we find �= �� from
which we conclude that � is real. �

Advanced comment. Note that the alternative proof of the second part shows that any Hermitian matrixA (that
is, a complex matrix A such that A�=A) has only real eigenvalues. If A is Hermitian, what can we conclude
about the eigenspaces if we follow the argument in the first part?

Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 89. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +i and ¡i.
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