Review.

• Let A be $n \times n$. The matrix exponential is

 $e^{A} = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$ Then, $\frac{d}{dt}e^{At} = Ae^{At}$. Why? $\frac{d}{dt}e^{At} = \frac{d}{dt}\left(I + At + \frac{1}{2!}A^{2}t^{2} + \frac{1}{3!}A^{3}t^{3} + \cdots\right) = A + \frac{1}{1!}A^{2}t + \frac{1}{2!}A^{3}t^{2} + \cdots = Ae^{At}$

- If $A = PDP^{-1}$, then $e^A = Pe^DP^{-1}$.
- The solution to $\mathbf{y}' = A\mathbf{y}$, $\mathbf{y}(0) = \mathbf{y}_0$ is $\mathbf{y}(t) = e^{At}\mathbf{y}_0$. Why? Because $\mathbf{y}'(t) = Ae^{At}\mathbf{y}_0 = A\mathbf{y}(t)$ and $\mathbf{y}(0) = e^{0A}\mathbf{y}_0 = \mathbf{y}_0$.

Example 147. The matrix exponential shares many other properties of the usual exponential:

• $e^A e^B = e^{A+B} = e^B e^A$ if AB = BA

Why the condition AB = BA? By the Taylor series, $e^{A+B} = I + (A+B) + \frac{(A+B)^2}{2!} + ...$ In order to simplify that to

$$e^A e^B = \left(I + A + \frac{A^2}{2!} + \dots\right) \left(I + B + \frac{B^2}{2!} + \dots\right),$$

we need that $(A+B)^2 = A^2 + AB + BA + B^2$ is the same as $A^2 + 2AB + B^2$. That's only the case if AB = BA.

• e^A is invertible and $(e^A)^{-1} = e^{-A}$

Why? That actually follows from the previous property.

Example 148. Compute e^{At} for $A = \begin{bmatrix} 0 & 1 \\ & 0 \end{bmatrix}$. Solution. Note that $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Hence, $e^{At} = I + At + \frac{t^2}{2!}A^2 + ... = I + At = \begin{bmatrix} 1 & t \\ & 1 \end{bmatrix}$.

Example 149. Compute e^{At} for $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 \\ 0 \end{bmatrix}$. Solution. Note that $A^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 \\ 0 \end{bmatrix}$ and $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \\ 0 \end{bmatrix}$. Hence, $e^{At} = I + At + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + ... = I + At + \frac{1}{2}A^2t^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & t & 0 \\ 0 & t \\ 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 0 & t^2 \\ 0 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & t & \frac{t^2}{2} \\ 1 & t \\ 1 \end{bmatrix}$.

Example 150. Compute e^{At} for $A = \begin{bmatrix} 2 & 1 \\ & 2 \end{bmatrix}$.

Solution.

- Write $A = \begin{bmatrix} 2 & 1 \\ 2 \end{bmatrix} = 2I + N$ with $N = \begin{bmatrix} 0 & 1 \\ 0 \end{bmatrix}$. Note that 2I and N commute. Hence, $e^{At} = e^{2It + Nt} = e^{2It}e^{Nt}$.
- Note that $N^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Hence, $e^{Nt} = I + Nt + \frac{t^2}{2!}N^2 + ... = I + Nt = \begin{bmatrix} 1 & t \\ & 1 \end{bmatrix}$.

• Combined,
$$e^{At} = e^{2It+Nt} = e^{2It}e^{Nt} = \begin{bmatrix} e^{2t} & e^{2t} \\ & e^{2t} \end{bmatrix} \begin{bmatrix} 1 & t \\ & 1 \end{bmatrix} = \begin{bmatrix} e^{2t} & te^{2t} \\ & e^{2t} \end{bmatrix}$$
.
Advanced. Can you show that $A^n = \begin{bmatrix} 2^n & n2^{n-1} \\ & 2^n \end{bmatrix}$?

Armin Straub straub@southalabama.edu **Example 151.** Solve the differential equation

$$\boldsymbol{y}' = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix} \boldsymbol{y}, \qquad \boldsymbol{y}(0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Solution. Repeating the work in the previous example, the solution to the differential equation is

$$\begin{aligned} \mathbf{y}(t) &= e^{At} \mathbf{y}_0 \\ &= e^{2It+Nt} \mathbf{y}_0 \quad \text{with } N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ &= e^{2It} e^{Nt} \mathbf{y}_0 \quad (\text{because } 2It \text{ and } Nt \text{ commute}) \\ &= \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} \left(1 + Nt + \frac{1}{2}(Nt)^2 + \frac{1}{3!}(Nt)^3 + \dots \right) \mathbf{y}_0 \\ &= \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} (1 + Nt) \mathbf{y}_0 \quad (\text{because } N^2 = \mathbf{0}) \\ &= \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} \begin{bmatrix} 1 & t \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} \begin{bmatrix} t - 1 \\ 1 \end{bmatrix} = \begin{bmatrix} (t-1)e^{2t} \\ e^{2t} \end{bmatrix}. \end{aligned}$$

Check. We should verify that $y_1 = (t-1)e^{2t}$ and $y_2 = e^{2t}$ satisfy $y'_1 = 2y_1 + y_2$ and $y'_2 = 2y_2$. Indeed, $y'_1 = e^{2t} + (t-1)2e^{2t}$ equals $2y_1 + y_2 = 2(t-1)e^{2t} + e^{2t}$.

Comment. For applications, having solutions like $te^{\lambda t}$ or $t \cos(\lambda t)$ (when the eigenvalues are imaginary) is connected to the phenomenon of resonance, which you may have already seen.

Important comment. Note that we can immediately see from the solution that the original matrix A is not diagonalizable: there is a term te^{2t} , whereas in the diagonalizable case we would only see exponentials like e^{2t} by themselves.

In our upcoming discussion of complex numbers we will see that e^{2it} (here, 2i would be the eigenvalue) can be rewritten in terms of $\cos(2t)$ and $\sin(2t)$. Both of these are periodic and bounded, so that the same is true for every linear combination.

In that case, if the eigenvalue 2i was repeated in such a way that the matrix A is not diagonalizable, then we would get the functions $t \cos(2t)$ and $t \sin(2t)$ in our solutions. These, however, are not bounded! This phenomenon (getting solutions that are unbounded under the right/wrong circumstances) is called **resonance**.

https://en.wikipedia.org/wiki/Resonance

Understanding when resonance occurs is of crucial importance for practical applications.