Example 133. We only discuss linear differential equations (DEs). Non-linear DEs include $y' = y^2 + 1$ or the second-order equation $y'' = \sin(ty') + y$.

The order of a DE indicates the highest occuring derivative.

Note, however, that $y'' = \sin(t)y' + y$ is a linear DE, because y and its derivatives occur linearly.

We will see here how to solve those linear DEs which have constant coefficients. That is, the coefficients of y are constants, as opposed to functions (like sin(t)) depending on t.

Review.

- The solution to $\mathbf{y}' = A\mathbf{y}$, $\mathbf{y}(0) = \mathbf{y}_0$ is $\mathbf{y}(t) = e^{At}\mathbf{y}_0$. Why? Because $\mathbf{y}'(t) = Ae^{At}\mathbf{y}_0 = A\mathbf{y}(t)$ and $\mathbf{y}(0) = e^{0A}\mathbf{y}_0 = \mathbf{y}_0$.
- If we have the diagonalization $A = PDP^{-1}$, then $e^A = Pe^DP^{-1}$ (and $e^{At} = Pe^{Dt}P^{-1}$).
- If $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then $e^A = \begin{bmatrix} e^2 & 0 \\ 0 & e^5 \end{bmatrix}$ and $e^{At} = \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{5t} \end{bmatrix}$.

Example 134. Solve the initial value problem $\mathbf{y}' = \begin{bmatrix} 0 & -2 \\ -1 & 1 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 3 \\ 0 \end{bmatrix}.$

Solution.

- $A = \begin{bmatrix} 0 & -2 \\ -1 & 1 \end{bmatrix}$ has characteristic polynomial $-\lambda(1-\lambda) 2 = (\lambda+1)(\lambda-2)$. Hence, the eigenvalues of A are -1, 2. The -1-eigenspace $\operatorname{null}\left(\begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}\right)$ has basis $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The 2-eigenspace $\operatorname{null}\left(\begin{bmatrix} -2 & -2 \\ -1 & -1 \end{bmatrix}\right)$ has basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Hence, $A = PDP^{-1}$ with $P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- Finally, we compute the solution $\boldsymbol{y}(t) = e^{At} \boldsymbol{y}_0$:

$$\mathbf{y}(t) = Pe^{Dt}P^{-1}\mathbf{y}_{0}$$

$$= \left[\begin{array}{c} 2 & -1 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} e^{-t} \\ e^{2t} \end{array} \right] \frac{1}{3} \left[\begin{array}{c} 1 & 1 \\ -1 & 2 \end{array} \right] \left[\begin{array}{c} 3 \\ 0 \end{array} \right] = \left[\begin{array}{c} 2e^{-t} + e^{2t} \\ e^{-t} - e^{2t} \end{array} \right]$$

$$\left[\begin{array}{c} \frac{2e^{-t} - e^{2t}}{e^{-t} - e^{2t}} \end{array} \right]$$

Check. Since it is simple to check, it would be almost criminal to not verify that $y(0) = \begin{bmatrix} 2+1 \\ 1-1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

Example 135. (homework) Suppose that $e^{Mt} = \frac{1}{10} \begin{bmatrix} e^t + 9e^{2t} & 3e^t - 3e^{2t} \\ 3e^t - 3e^{2t} & 9e^t + e^{2t} \end{bmatrix}$.

- (a) Without doing any computations, determine M^n .
- (b) What is M?
- (c) Without doing any computations, determine the eigenvalues and eigenvectors of M.

Solution.

(a) Recall that $e^{Mt} = Pe^{Dt}P^{-1}$ while $M^n = PD^nP^{-1}$, provided that $M = PDP^{-1}$. The fact the formula for e^{Mt} features e^t and e^{2t} , means that the eigenvalues of M must be 1 and 2. Hence,

$$D = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad e^{Dt} = \begin{bmatrix} e^t \\ e^{2t} \end{bmatrix}, \quad D^n = \begin{bmatrix} 1 \\ 2^n \end{bmatrix}.$$

Therefore, we just need to replace e^t by $1^n = 1$ as well as e^{2t} by 2^n to get:

$$M^{n} = \frac{1}{10} \begin{bmatrix} 1 + 9 \cdot 2^{n} & 3 - 3 \cdot 2^{n} \\ 3 - 3 \cdot 2^{n} & 9 + 2^{n} \end{bmatrix}$$

- (b) In particular, we see that the underlying matrix is $M = M^1 = \frac{1}{10} \begin{bmatrix} 1+9\cdot 2 & 3-3\cdot 2\\ 3-3\cdot 2 & 9+2 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 19 & -3\\ -3 & 11 \end{bmatrix}$. [Alternatively, we can find M by computing $\frac{d}{dt}e^{Mt} = Me^{Mt}$ and then setting t = 0.]
- (c) The eigenvalues are 1 and 2. Looking at the coefficients of e^t in the first column of e^{Mt} , we can see that $\begin{bmatrix} 1\\3 \end{bmatrix}$ is a 1-eigenvector. [We can also look the second column of e^{Mt} , to obtain $\begin{bmatrix} 3\\9 \end{bmatrix}$ which is a multiple and thus equivalent.] Likewise, we find that $\begin{bmatrix} 9\\-3 \end{bmatrix}$ or, equivalently, $\begin{bmatrix} -3\\1 \end{bmatrix}$ is a 2-eigenvector.

Higher-order differential equations

Example 136. Write the (second-order) differential equation y'' = 2y' + y as a system of (firstorder) differential equations.

Solution. Write $y_1 = y$ and $y_2 = y'$. Then y'' = 2y' + y becomes $y'_2 = 2y_2 + y_1$.

Therefore, y'' = 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_1 + 2y_2 \end{cases}$ In matrix form, this is $\boldsymbol{y}' = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{y}$.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Note. The "trick" of looking at the pair $\begin{bmatrix} y \\ y' \end{bmatrix}$ instead of a single function is what we used to translate the Fibonacci recurrence into a 2×2 system.

Example 137. Write the (third-order) differential equation y''' = 3y'' - 2y' + y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$, $y_2 = y'$ and $y_3 = y''$.

Then, y''' = 3y'' - 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_3 \\ y'_3 = y_1 - 2y_2 + 3y_3 \end{cases}$ In matrix form, this is $y' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} y$.