
Sketch of Lecture 22 Mon, 3/11/2024

(reflections) Suppose that M is the matrix for reflecting through the plane W in 3-space.

� The 1-eigenspace of M is W . (dimension 2)

� The ¡1-eigenspace of M is W?. (dimension 1)

In particular, M is symmetric.

Why? By definition, the 1-eigenspace of M consists of those vectors that get reflected to themselves. But those
are precisely the vectors in the plane W (only vectors on the plane are unchanged by the reflection). On the
other hand, the¡1-eigenspace consists of those vectors v that get reflected to¡v (the exact opposite direction).
These are precisely the vectors orthogonal to the plane.
As in the case of projection matrices, because the eigenvalues are real and the eigenspaces are orthogonal, the
reflection matrices are symmetric.
Comment. In this context, the line W? is often called the normal line of the plane W .

Example 119. Let A be the matrix for reflecting through the plane W = span

(24 1
1
1

35;
24 ¡1

0
1

35
)
.

(a) Diagonalize A (without first computing A) as A=PDP T .

(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) The eigenvalues of A are 1; 1;¡1. The 1-eigenspace of A is W , and the ¡1-eigenspace is W?.

In order to achieve a diagonalization PDPT we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

As in the previous example, W?= span

(24 1
¡2
1

35
)
.

We therefore choose D=

24 1
1
¡1

35 and, after normalizing columns, P =

2664 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775.
(b) A is invertible (because 0 is not an eigenvalue).

Like any reflection matrix, A is symmetric.
Finally, note that A2= I (reflecting twice isn't doing anything), so that A¡1=A. It follows that A is
orthogonal, because A¡1=A=AT .

By the way. Multiplying out A=PDPT , we can find that A= 1

3

24 2 2 ¡1
2 ¡1 2
¡1 2 2

35.
Comment. Similarly, a n� n matrix corresponds to a reflection (through a hyperplane) if and only if it has a
(n¡ 1)-dimensional 1-eigenspace and a 1-dimensional ¡1-eigenspace and these two spaces are orthogonal.

An alternative way of computing reflection matrices. Realize that, if n is the vector orthogonal to the plane
(i.e. n is the normal vector of the plane), then reflecting v means sending it to v¡ 2(projection of v onto n).

We already observed that n=

24 1
¡2
1

35.
Hence, the reflection of v is v¡ 2(projection of v onto n)=v¡ 2nn �v

n �n =v¡ 2
nnTv

nTn
=
�
I ¡ 2nn

T

nTn

�
v.

Accordingly, the reflection matrix is A= I ¡ 2nn
T

nTn
=

24 1
1
1

35¡ 2

6

24 1 ¡2 1
¡2 4 ¡2
1 ¡2 1

35= 1

3

24 2 2 ¡1
2 ¡1 2
¡1 2 2

35.
Comment. In other words, we got A from subtracting 2 times the projection matrix onto n from I.
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Application: Linear differential equations

Example 120. (warmup) Solve the differential equation (DE) y 0=2.
Solution. From calculus, we know that the solutions are of the form y(t)= 2t+C.
Comment. To get a unique solution, we need to specify additional information, like an initial condition.

Example 121. (warmup) Solve the initial value problem (IVP) y 0=2, y(0)= 1.
Solution. This has the unique solution y(t)= 2t+1.

Example 122. Which functions y(t) satisfy the differential equation y 0= y?

Solution. y(t)= et and, more generally, y(t)=Cet. (And nothing else.)

(exponential function) et is the unique solution to y 0= y, y(0)= 1.

From here, it follows that et=1+ t+ t2

2!
+ t3

3!
+ :::.

The latter is the Taylor series for et at t=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dt

t3

3!
=
t2

2!
.

Example 123. Show that the differential equation y 0=3y is solved by y(t)=Ce3t.

Solution. Indeed, if y(t)=Ce3t, then y 0(t)= 3Ce3t=3y(t).
Comment. It is important to realize that we can always easily check whether a function solves a differential
equation. This means that (although you might be unfamiliar with the techniques for solving) you can use
computer algebra systems like Sage to solve differential equations without trust issues.

Example 124. Solve the differential equation y 0= ay with initial condition y(0)= y0.

Solution. As in the previous example, the general solution to y 0= ay is y(t)=Ceat.
Since y(0)=Ce0=C= y0, we conclude that the unique solution to the IVP is y(t)= eaty0.
Comment. It looks silly to write eaty0 instead of y0eat here, but we will soon replace the number a with a
matrix A, and in that case only eAty0 makes sense.

Example 125. Our goal is to solve (systems of) differential equations like:
y1
0 = 2y1
y2
0 = ¡y1 +3y2 +y3
y3
0 = ¡y1 +y2 +3y3

y1(0) = 1
y2(0) = 0
y3(0) = 2

In matrix form, this becomes

y 0=

24 2 0 0
¡1 3 1
¡1 1 3

35y; y(0)=

24 1
0
2

35:
The key idea will be to solve y 0=Ay by introducing eAt.

Theorem 126. The solution to y 0=Ay, y(0)= y0 is y(t)= eAty0:

Recall from Example 124 that the solution to y 0=ay, y(0)= y0 is y(t)= eaty0: Here, however, At is a matrix
and so we need to make sense of the matrix exponential. Next time, we will define eA by the familiar Taylor
series for ex.
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