Example 116. Consider the sequence a_{n} defined by $a_{n+2}=2 a_{n+1}+5 a_{n}$ and $a_{0}=0, a_{1}=1$.
(a) Determine the first few terms of the sequence.
(b) Find a Binet-like formula for a_{n}.
(c) Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

Solution.

(a) $0,1,2,9,28,101,342,1189,4088, \ldots$
(b) The recursion can be translated to $\left[\begin{array}{l}a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ll}2 & 5 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$. The eigenvalues of $\left[\begin{array}{ll}2 & 5 \\ 1 & 0\end{array}\right]$ are $1 \pm \sqrt{6}$.
Hence, $a_{n}=C_{1}(1+\sqrt{6})^{n}+C_{2}(1-\sqrt{6})^{n}$ and we only need to figure out the values of C_{1} and C_{2}.
Using the two initial conditions, we get two equations:
$\left(a_{0}=\right) C_{1}+C_{2}=0,\left(a_{1}=\right) C_{1}(1+\sqrt{6})+C_{2}(1-\sqrt{6})=1$.
Solving, we find $C_{1}=\frac{1}{2 \sqrt{6}}$ and $C_{2}=-\frac{1}{2 \sqrt{6}}$ so that, in conclusion, $a_{n}=\frac{(1+\sqrt{6})^{n}-(1-\sqrt{6})^{n}}{2 \sqrt{6}}$.
Comment. Alternatively, we could have proceeded as we did previously in the case of the Fibonacci numbers: starting with the recursion matrix M, we compute its diagonalization $M=P D P^{-1}$. Multiplying out $P D^{n} P^{-1}\left[\begin{array}{l}a_{1} \\ a_{0}\end{array}\right]$, we obtain the Binet-like formula for a_{n}. However, this is more work than what we did.
(c) It follows from the Binet-like formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1+\sqrt{6} \approx 3.44949$.

Comment. Actually, we don't need the Binet-like formula for this conclusion. Just the eigenvalues and the observation that C_{1} cannot be 0 are enough. [We cannot have $C_{1}=0$, because then $a_{n}=C_{2}(1-\sqrt{6})^{n}$ so that $a_{0}=0$ would imply $C_{2}=0$.]

Another brief look at projections (and reflections)

(projections) Suppose that M is the projection matrix for projecting onto a subspace W.

- The 1-eigenspace of M is W.
- The 0 -eigenspace of M is W^{\perp}.

In particular, M is symmetric.

Why? By definition, the 1-eigenspace of M consists of those vectors that get projected to themselves. But those are precisely the vectors in W (recall that projecting a vector v onto W means producing the vector in W that is closest to v). Can you likewise spell out the situation for the 0 -eigenspace?
Note that M cannot have further eigenvalues (because the dimensions of W and W^{\perp} already add up to the dimension of the space that we are working in).
Because the eigenvalues of M are real and the eigenspaces are orthogonal, the matrix M has a diagonalization of the form $M=P D P^{T}$ (make sure you can explain why!) which implies that M is symmetric (that's because $\left.M^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=M\right)$.

Example 117. Let A be the matrix for orthogonally projecting onto $W=\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$.
(a) Diagonalize A (without first computing A) as $A=P D P^{-1}$.
(b) Diagonalize A as $A=P D P^{T}$.

Comment. This gives us yet another way to get our hands on projection matrices: we can directly write down the matrices P, D for the diagonalization $A=P D P^{T}$. The main point here is that the diagonalization of a A nicely reveals all the information about the projection.
[Can you see that this is not really a "new" way of computing projection matrices? In particular, note that, if Q is the matrix P with the third column omitted, then $A=Q Q^{T}$.]

Solution.

(a) The eigenvalues of A are $1,1,0$. The 1 -eigenspace of A is W (2 -dimensional), and the 0 -eigenspace is W^{\perp} (1-dimensional).
We already have a basis for W. On the other hand, $W^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\right)$ has basis $\left[\begin{array}{c}-1 / 4 \\ -1 / 2 \\ 1\end{array}\right]$.
We therefore choose $D=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ and $P=\left[\begin{array}{ccc}4 & 0 & -1 / 4 \\ 0 & 2 & -1 / 2 \\ 1 & 1 & 1\end{array}\right]$.
(b) In order to achieve a diagonalization $P D P^{T}$ we need to choose P to be orthogonal (which we can do here because the eigenspaces are orthogonal).
Applying Gram-Schmidt to the basis $\boldsymbol{w}_{1}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right], \boldsymbol{w}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ (of the 1-eigenspace), we construct the orthogonal basis $\boldsymbol{q}_{1}=\boldsymbol{w}_{1}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right], \boldsymbol{q}_{2}=\boldsymbol{w}_{2}-\frac{\boldsymbol{w}_{2} \cdot \boldsymbol{q}_{1}}{\boldsymbol{q}_{1} \cdot \boldsymbol{q}_{1}} \boldsymbol{q}_{1}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]-\frac{1}{17}\left[\begin{array}{c}4 \\ 0 \\ 1\end{array}\right]=\frac{2}{17}\left[\begin{array}{c}-2 \\ 17 \\ 8\end{array}\right]$.
Next, we normalize the vectors $\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right], \frac{1}{17}\left[\begin{array}{c}-4 \\ 34 \\ 16\end{array}\right],\left[\begin{array}{c}-1 / 4 \\ -1 / 2 \\ 1\end{array}\right]$ to $\frac{1}{\sqrt{17}}\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right], \frac{1}{\sqrt{357}}\left[\begin{array}{c}-2 \\ 17 \\ 8\end{array}\right], \frac{1}{\sqrt{21}}\left[\begin{array}{c}-1 \\ -2 \\ 4\end{array}\right]$.
We therefore choose $D=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ and $P=\left[\begin{array}{ccc}4 / \sqrt{17} & -2 / \sqrt{357} & -1 / \sqrt{21} \\ 0 & 17 / \sqrt{357} & -2 / \sqrt{21} \\ 1 / \sqrt{17} & 8 / \sqrt{357} & 4 / \sqrt{21}\end{array}\right]$.
By the way. Multiplying out $A=P D P^{T}$, we can find that $A=\frac{1}{21}\left[\begin{array}{ccc}20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5\end{array}\right]$ as in Example 55 .
Example 118. Let A be the matrix for orthogonally projecting onto $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) Diagonalize A (without first computing A) as $A=P D P^{T}$.
(b) Is A invertible, orthogonal, symmetric?

Solution.
(a) The eigenvalues of A are $1,1,0$. The 1 -eigenspace of A is W (2-dimensional), and the 0 -eigenspace is W^{\perp} (1-dimensional). Note that we are lucky and already have an orthogonal basis for W. On the other hand, $W^{\perp}=\operatorname{null}\left(\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 1\end{array}\right]\right)$ has basis $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.
We therefore choose $D=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ and, after normalizing columns, $P=\left[\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & 0 \\ 1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\ & & 0\end{array}\right]$.
(b) A is not invertible (because 0 is an eigenvalue) and therefore also cannot be orthogonal. Like any projection matrix, A is symmetric.
By the way. Multiplying out $A=P D P^{T}$, we can find that $A=\frac{1}{6}\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]$.

