Review. Fibonacci numbers, Binet formula
Example 110. Consider the sequence $a_{n}$ defined by $a_{n+2}=2 a_{n+1}+3 a_{n}$ and $a_{0}=-1, a_{1}=5$.
(a) Determine the first few terms of the sequence.
(b) Write down a matrix-vector version of the recursion.
(c) Find a Binet-like formula for $a_{n}$.
(d) Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

## Solution.

(a) $-1,5,7,29,79,245,727,2189,6559, \ldots$
(b) The recursion can be translated to $\left[\begin{array}{l}a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$.
(c) (solution using matrix powers) Thus, $\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{c}a_{1} \\ a_{0}\end{array}\right]$.

After some work (do it!), we diagonalize $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]=P D P^{-1}$ with $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$ and $P=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$.
Therefore, $\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]=P D^{n} P^{-1}\left[\begin{array}{l}a_{1} \\ a_{0}\end{array}\right]=\underbrace{\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]}_{=\left[\begin{array}{cc}3^{n+1} & (-1)^{n+1} \\ 3^{n} & (-1)^{n}\end{array}\right]} \begin{array}{cc}3^{n} & 0 \\ 0 & (-1)^{n}\end{array}] \frac{1}{4}\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{c}5 \\ -1\end{array}\right] \quad=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
In particular, $a_{n}=3^{n}-2(-1)^{n}$.
(simplified solution) The eigenvalues of $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ are 3 and -1 .
Looking back at our work above, we can see that $a_{n}$ therefore must have a formula of the form $a_{n}=$ $C_{1} \cdot 3^{n}+C_{2} \cdot(-1)^{n}$ for some unknown constants $C_{1}, C_{2}$ which we still need to figure out Using the two initial conditions, we get two equations:
$\left(a_{0}=\right) C_{1}+C_{2}=-1,\left(a_{1}=\right) 3 C_{1}-C_{2}=5$.
Solving, we find $C_{1}=1$ and $C_{2}=-2$ so that, in conclusion, $a_{n}=3^{n}-2(-1)^{n}$.
(d) It follows from the Binet-like formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=3$ (the eigenvalue of largest absolute value). Important comment. Right after computing the eigenvalues, we knew that this limit would be 3 , except in the special (degenerate) case of $C_{1}=0$.

Definition 111. A sequence $a_{n}$ satisfying a recursion of the form

$$
a_{n+d}=r_{1} a_{n+d-1}+r_{2} a_{n+d-2}+\ldots+r_{d} a_{n}
$$

is called $C$-finite (or, constant recursive) of order $d$.

For instance. For the Fibonacci numbers, $d=2$ and $r_{1}=r_{2}=1$.

In matrix-vector form.

$$
\left[\begin{array}{c}
a_{n+d} \\
a_{n+d-1} \\
\vdots \\
a_{n+1}
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
r_{1} & r_{2} & \cdots & r_{d-1} & r_{d} \\
1 & & & & 0 \\
& 1 & & & 0 \\
& & \ddots & & \vdots \\
& & & 1 & 0
\end{array}\right]}_{M}\left[\begin{array}{c}
a_{n+d-1} \\
a_{n+d-2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

By the same reasoning as for Fibonacci numbers, $C$-finite sequences have a Binet-like formula:
Theorem 112. (generalized Binet formula) Suppose the recursion matrix $M$ has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{d}$. Then

$$
a_{n}=C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n}+\ldots+C_{d} \lambda_{d}^{n}
$$

for certain numbers $C_{1}, \ldots, C_{d}$.
For instance. For the Fibonacci numbers, $\lambda_{1}=\frac{1+\sqrt{5}}{2}, \lambda_{2}=\frac{1-\sqrt{5}}{2}$, and $C_{1}=\frac{1}{\sqrt{5}}, C_{2}=-\frac{1}{\sqrt{5}}$.
Comment. A little more care is needed in the case that eigenvalues are repeated.
Corollary 113. Under the assumptions of the previous theorem, if $\lambda_{1}$ is the eigenvalue with the largest absolute value and $\lambda_{1}>0$, as well as $\alpha_{1} \neq 0$, then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lambda_{1}$.
Proof. This follows from $a_{n}=C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n}+\ldots+C_{d} \lambda_{d}^{n}$ because, for large $n$, the term $C_{1} \lambda_{1}$ dominates the others. Indeed, we have

$$
\frac{a_{n+1}}{a_{n}}=\frac{C_{1} \lambda_{1}^{n+1}+C_{2} \lambda_{2}^{n+1}+\ldots+C_{d} \lambda_{d}^{n+1}}{C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n}+\ldots+C_{d} \lambda_{d}^{n}}=\frac{C_{1} \lambda_{1}+C_{2} \lambda_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}+\ldots+C_{d} \lambda_{d}\left(\frac{\lambda_{d}}{\lambda_{1}}\right)^{n}}{C_{1}+C_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}+\ldots+C_{d}\left(\frac{\lambda_{d}}{\lambda_{1}}\right)^{n}} \stackrel{n \rightarrow \infty}{\longrightarrow} \frac{C_{1} \lambda_{1}}{C_{1}}=\lambda_{1} .
$$

Example 114. Consider the sequence $a_{n}$ defined by $a_{n+3}=4 a_{n+2}-a_{n+1}-6 a_{n}$ and $a_{0}=0$, $a_{1}=-2, a_{2}=2$.
(a) Determine the first few terms of the sequence.
(b) Find a Binet-like formula for $a_{n}$.
(c) Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

Solution.
(a) $0,-2,2,10,50,178,602,1930,6050, \ldots$

Note that this sequence is $C$-finite of order 3 .
(b) The recursion can be translated to $\left[\begin{array}{c}a_{n+3} \\ a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ccc}4 & -1 & -6 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+2} \\ a_{n+1} \\ a_{n}\end{array}\right]$.

Expanding by the 2nd row: $\left|\begin{array}{ccc}4-\lambda & -1 & -6 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda\end{array}\right|=-1 \cdot\left|\begin{array}{cc}-1 & -6 \\ 1 & -\lambda\end{array}\right|-\lambda \cdot\left|\begin{array}{cc}4-\lambda & -6 \\ 0 & -\lambda\end{array}\right|=-\lambda^{3}+4 \lambda^{2}-\lambda-6$
The eigenvalues of the transition matrix are the roots of this polynomial: $\lambda=-1,2,3$
[You will not be asked to find roots of cubic polynomials by hand.]
Hence, $a_{n}=C_{1} \cdot(-1)^{n}+C_{2} \cdot 2^{n}+C_{3} \cdot 3^{n}$ and we only need to figure out the two unknowns $C_{1}, C_{2}, C_{3}$. Using the three initial conditions, we get three equations:
( $a_{0}=$ ) $C_{1}+C_{2}+C_{3}=0,\left(a_{1}=\right)-C_{1}+2 C_{2}+3 C_{3}=-2$, $\left(a_{2}=\right) C_{1}+4 C_{2}+9 C_{3}=2$.
Solving, we find $C_{1}=1, C_{2}=-2$ and $C_{3}=1$ so that, in conclusion, $a_{n}=(-1)^{n}-2 \cdot 2^{n}+3^{n}$.
Comment. Do you see how we might have found the characteristic polynomial directly from the recursion?
(c) It follows from the Binet-like formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=3$ (the eigenvalue of largest absolute value). Important comment. Right after computing the eigenvalues, we knew that this limit would be 3, except in the special (degenerate) case of $C_{3}=0$.

Example 115. (extra) Consider the sequence $a_{n}$ defined by $a_{n+2}=2 a_{n+1}+4 a_{n}$ and $a_{0}=0$, $a_{1}=1$. Determine $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
Solution. The recursion can be translated to $\left[\begin{array}{c}a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$.
The eigenvalues of $\left[\begin{array}{ll}2 & 4 \\ 1 & 0\end{array}\right]$ are $1 \pm \sqrt{5}$. Hence, $a_{n}=C_{1}(1+\sqrt{5})^{n}+C_{2}(1-\sqrt{5})^{n}$ for certain numbers $C_{1}, C_{2}$.
[Note that we cannot have $C_{1}=0$, because then $a_{n}=C_{2}(1-\sqrt{5})^{n}$ so that $a_{0}=0$ would imply $C_{2}=0$.]
Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1+\sqrt{5} \approx 3.23607$.
Comment. With just a little more work, we find the Binet formula $a_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2 \sqrt{5}}$.
First few terms of sequence. $0,1,2,8,24,80,256,832, \ldots$
These are actually related to Fibonacci numbers. Indeed, $a_{n}=2^{n-1} F_{n}$. Can you prove this directly from the recursions? Alternatively, this follows from the Binet formulas.

