Powers of matrices

Example 95. (warmup) Consider $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right]$.

- What are the eigenspaces?
- What are A^{-1} and A^{100} ? What is A^{n} ?

Solution.

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is a-2-eigenvector, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a 3 -eigenvector. In other words, the - 2 -eigenspace is $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ and the 3 -eigenspace is $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
- $A^{-1}=\left[\begin{array}{cc}-1 / 2 & 0 \\ 0 & 1 / 3\end{array}\right]$ and $A^{100}=\left[\begin{array}{cc}(-2)^{100} & 0 \\ 0 & 3^{100}\end{array}\right]=\left[\begin{array}{cc}2^{100} & 0 \\ 0 & 3^{100}\end{array}\right]$. In general, $A^{n}=\left[\begin{array}{cc}(-2)^{n} & 0 \\ 0 & 3^{n}\end{array}\right]$.

Comment. Algebraically, the map $\boldsymbol{v} \mapsto A v$ looks very simple. However, notice that it is not so easy to say what happens to, say, $\boldsymbol{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ geometrically. That is because two things are happening: part of the vector \boldsymbol{v} is scaled by -2 , the other part is scaled by 3 .

Example 96. If A has λ-eigenvector \boldsymbol{v}, then what can we say about A^{2} ?
Solution. A^{2} has λ^{2}-eigenvector v.
[Indeed, $A^{2} \boldsymbol{v}=A(A \boldsymbol{v})=A(\lambda \boldsymbol{v})=\lambda A \boldsymbol{v}=\lambda^{2} \boldsymbol{v}$. This is even easier in words: multiplying \boldsymbol{v} with A has the effect of scaling it by λ; hence, multiplying it with A^{2} scales it by λ^{2}.]
Important comment. Similarly, A^{100} has λ^{100}-eigenvector v.

Example 97. If a matrix A can be diagonalized as $A=P D P^{-1}$, what can we say about A^{n} ?
Solution. First, note that $A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1}$. Likewise, $A^{n}=P D^{n} P^{-1}$.
[The point being that D^{n} is trivial to compute because D is diagonal.]
In particular. $A^{-1}=P D^{-1} P^{-1}$
Important comment. In the previous example, we observed that, if A has λ-eigenvector \boldsymbol{v}, then A^{n} has λ^{n} eigenvector \boldsymbol{v}. Note that this is also expressed in $A^{n}=P D^{n} P^{-1}$, because the latter is a diagonalization of A^{n}. The diagonalization shows that A^{n} and A have the same eigenvectors (since we can use the same matrix P) and that the eigenvalues of A^{n} are the n-th powers of the eigenvalues of A (which are the entries of the diagonal matrix D).
(computing matrix powers) If A is a square matrix with diagonalization $A=P D P^{-1}$, then

$$
A^{n}=P D^{n} P^{-1}
$$

Example 98. Let $A=\left[\begin{array}{ll}6 & 1 \\ 4 & 9\end{array}\right]$. Compute A^{n}.
Solution. First, we diagonalize: $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}1 & -1 \\ 4 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}10 & \\ & 5\end{array}\right]$. (Fill in the details!)
$A^{n}=P D^{n} P^{-1}=\left[\begin{array}{cc}1 & -1 \\ 4 & 1\end{array}\right]\left[\begin{array}{ll}10^{n} & \\ & 5^{n}\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}1 & -1 \\ 4 & 1\end{array}\right]\left[\begin{array}{cc}10^{n} & 10^{n} \\ -4 \cdot 5^{n} & 1 \cdot 5^{n}\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}10^{n}+4 \cdot 5^{n} & 10^{n}-5^{n} \\ 4 \cdot 10^{n}-4 \cdot 5^{n} & 4 \cdot 10^{n}+5^{n}\end{array}\right]$
Check. Verify the cases $n=0\left(A^{0}=I\right)$ and $n=1$.

Example 99. (extra) Let $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$. Determine A^{n}.
Solution. We first repeat our work from Example 17 to find a diagonalization of A :
By expanding by the second column, we find that the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is

$$
\left|\begin{array}{rrr}
4-\lambda & 0 & 2 \\
2 & 2-\lambda & 2 \\
1 & 0 & 3-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
4-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=(2-\lambda)[(4-\lambda)(3-\lambda)-2]=(2-\lambda)^{2}(5-\lambda) .
$$

Hence, the eigenvalues are $\lambda=2$ (with multiplicity 2) and $\lambda=5$.

- $\lambda=5: \operatorname{null}\left(\left[\begin{array}{rrr}-1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2\end{array}\right]\right) \stackrel{R R E F}{=} \operatorname{null}\left(\left[\begin{array}{llr}1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$
- $\lambda=$ 2: null $\left(\left[\begin{array}{lll}2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]\right) \stackrel{\operatorname{RREF}}{=} \operatorname{null}\left(\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

We therefore have the diagonalization $A=P D P^{-1}$ with $P=\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
[Keep in mind that other choices for P and D exist.]
With some labor (do it!), we find $P^{-1}=\frac{1}{3}\left[\begin{array}{ccc}1 & 0 & 1 \\ -2 & 3 & -2 \\ -1 & 0 & 2\end{array}\right]$.
It follows that

$$
\begin{aligned}
A^{n} & =P D^{n} P^{-1} \\
& =\left[\begin{array}{ccc}
2 & 0 & -1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
5^{n} & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 2^{n}
\end{array}\right] \frac{1}{3}\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & 3 & -2 \\
-1 & 0 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
2 \cdot 5^{n} & 0 & -2^{n} \\
2 \cdot 5^{n} & 2^{n} & 0 \\
5^{n} & 0 & 2^{n}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & 3 & -2 \\
-1 & 0 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
2 \cdot 5^{n}+2^{n} & 0 & 2 \cdot 5^{n}-2 \cdot 2^{n} \\
2 \cdot 5^{n}-2 \cdot 2^{n} & 3 \cdot 2^{n} & 2 \cdot 5^{n}-2 \cdot 2^{n} \\
5^{n}-2^{n} & 0 & 5^{n}+2 \cdot 2^{n}
\end{array}\right] .
\end{aligned}
$$

Check. Notice that it is particularly easy to verify the cases $n=0\left(A^{0}=I\right)$ and $n=1$.

