
Sketch of Lecture 14 Fri, 2/9/2024

Review. A matrix A has orthonormal columns () ATA= I.

Example 78. Suppose Q has orthonormal columns. What is the projection matrix P for orthog-
onally projecting onto col(Q)?
Solution. Recall that, to project onto col(A), the projection matrix is P =A(ATA)¡1AT .

Since QTQ= I, to project onto col(Q), the projection matrix is P =QQT .
Comment. A familiar special case is when we project onto a unit vector q: in that case, the projection of b onto
q is (q � b)q= q(qTb)= (qqT )b, so the projection matrix here is qqT .

Comment. In particular, if Q is not square, then QTQ= I but QQT =/ I. In some sense, QQT still �tries� to
be as close to the identity as possible: since it is the matrix projecting onto col(Q) it does act like the identity
for vectors in col(Q). (Vectors not in col(Q) are sent to their projection, that is, the closest to themselves while
restricted to col(Q).)

Example 79. Suppose A is invertible. What is the projection matrix P for orthogonally projecting
onto col(A)?
Solution. If A is an invertible n � n matrix, then col(A) = Rn (because the n columns of A are linearly
independent and hence form a basis for Rn).
Since col(A) is the entire space we are not really projecting at all: every vector is sent to itself.
In particular, the projection matrix is P = I.

Definition 80. An orthogonal matrix is a square matrix with orthonormal columns.

[This is not a typo (but a confusing convention): the columns need to be orthonormal, not just orthogonal.]

An n�n matrix Q is orthogonal () QTQ= I

In other words, Q¡1=QT .

Review. Recall the following properties of determinants:

� det(AB)= det(A)det(B)
Comment. In fancy language, this means that the determinant is a group homomorphism between the
group of (invertible) n�n matrices and (nonzero) complex numbers. Note that, on the left hand, we
are multiplying matrices while, on the right hand, we are multiplying numbers. The key point is that it
doesn't matter which multiplication we do: the two multiplications are compatible.

� det(A¡1)= 1

det(A)

Comment. Can you derive this from the previous property?

� det(AT)= det(A)
Comment. We are familiar with this in the context of cofactor expansion: it doesn't matter whether
we expand by a column or by a row.

Example 81. What can we say about det(Q) if Q is orthogonal?

Solution. Write d = det(Q). Since Q¡1 = QT , we have 1

d
= d (recall that det(Q¡1) = 1 / det(Q) and

det(QT)=det(Q)) or, equivalently, d2=1. Hence, d=�1.
Both of these are possible as the examples Q=

�
1 0
0 1

�
and Q=

�
1 0
0 ¡1

�
illustrate.
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Preview: The spectral theorem

Example 82. (review) In Example 17, we diagonalized A=
24 4 0 2
2 2 2
1 0 3

35 as A=PDP¡1.

We found that one choice for P and D is P =
24 2 0 ¡1
2 1 0
1 0 1

35, D=
24 5 0 0
0 2 0
0 0 2

35.
Spell out what that tells us about A!
Solution. The diagonal entries 5; 2; 2 of D are the eigenvalues of A.
The columns of P are corresponding eigenvectors of A.

�
24 2
2
1

35 is a 5-eigenvector of A (that is, A

24 2
2
1

35=5

24 2
2
1

35).

� The 2-eigenspace of A is 2-dimensional. A basis is

24 0
1
0

35;
24 ¡10

1

35.

Example 83. Diagonalize the symmetric matrix A=
24 8 ¡6 2
¡6 7 ¡4
2 ¡4 3

35 as A=PDP¡1.

Review. Recall that a matrix A is symmetric if AT =A.

Solution. We let Sage do the work for us:

Sage] A = matrix([[8,-6,2],[-6,7,-4],[2,-4,3]])

Sage] A.eigenmatrix_right()0BBBBBB@
24 15 0 0

0 3 0
0 0 0

35;
26666664

1 1 1

¡1 1
2

2

1
2
¡1 2

37777775
1CCCCCCA

This ouput shows that A is diagonalizable as A=PDP¡1 with D=

24 15 0 0
0 3 0
0 0 0

35 and P =

266664
1 1 1

¡1 1

2
2

1

2
¡1 2

377775.
Just to make sure. This means that the eigenvalues of A are 15; 3; 0 (the diagonal entries of D).

Moreover, we have that

2664 1
¡1
1
2

3775 is a 15-eigenvector,
2664 1

1
2
¡1

3775 is a 3-eigenvector, and
24 1
2
2

35 is a 0-eigenvector.

Important observation. Note that the eigenspaces of A are orthogonal to each other here.
The spectral theorem says that this is true for all symmetric matrices A.

Example 84. Diagonalize the symmetric matrix A=
24 8 ¡6 2
¡6 7 ¡4
2 ¡4 3

35 as A=PDPT .

Solution. By the previous example, we can diagonalizeA as P~DP~¡1 with P~=

24 2 2 1
¡2 1 2
1 ¡2 2

35andD=

24 15 0 0
0 3 0
0 0 0

35.

(To avoid fractions, we just scaled the first two columns of P~, which are eigenvectors.)

Note that the columns of P~ are orthogonal (this is due the spectral theorem). If we normalize them (they all

have length 22+22+1
p

=3), then we obtain the orthogonal matrix P =
1

3

24 2 2 1
¡2 1 2
1 ¡2 2

35.
Since P¡1=PT , we now have A=PDPT .
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Example 85.

(a) Determine the eigenspaces of the symmetric matrix A=
�
1 2
2 4

�
.

(b) Diagonalize A as A=PDPT .

Solution.

(a) The characteristic polynomial is
�������� 1¡� 2

2 4¡�

��������=�2¡ 5�=�(�¡ 5), and so A has eigenvalues 5; 0.

The 5-eigenspace is null
��
¡4 2
2 ¡1

��
has basis

�
1
2

�
.

The 0-eigenspace is null
��

1 2
2 4

��
has basis

�
¡2
1

�
.

Important observation. The 5-eigenvector
�
1
2

�
and the 0-eigenvector

�
¡2
1

�
are orthogonal!

(b) Note that a usual diagonalization is of the form A=PDP¡1.
We need to choose P so that P¡1=PT , which means that P must be orthogonal (meaning orthonormal
columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]

Hence, we normalize the two eigenvectors to 1

5
p

�
1
2

�
and 1

5
p

�
¡2
1

�
.

With P =
1

5
p

�
1 ¡2
2 1

�
and D=

�
5 0
0 0

�
, we then have A=PDPT .
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